2009-07-09 20094 A4 TOKYO TECH

HEHT—XTIOFv F— (BE)

-

10. EEREBEET7AILATEDERE,
2 E{RE50E, ERE

EH S HEIRER
kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Disk Drives

%% o
Track

Sector \ Tracks

Controller
+

Cache

Cylinder) \ f %'qsecmrs

~~Platter f
Head Track \ j
To access data: =

seek time (&>—%Bf#l): position head over the proper track
rotational latency (EIS&f§5 M) : wait for desired sector
transfer time (¥E%MMH): grab the data (one or more sectors)

Controller time (FIf#IEFR) : the overhead the disk controller
imposes in performing a disk 1/0 access

Magnetic Disk Characteristic

Track
= Disk read/write components Sector
1. Seek time: position the head over the Cache
proper track (3 to 14 ms avg)
= due to locality of disk references
the actual average seek time may
be only 25% to 33% of the
advertised number
2. Rotational latency: wait for the desired sector to rotate
under the head (%2 of 1/RPM converted to ms)
= 0.5/5400RPM = 5.6ms to 0.5/15000RPM = 2.0ms
s Transfer time: transfer a block of bits (one or more sectors)
under the head to the disk controller’s cache (30 to 80 MB/s
are typical disk transfer rates)
4. Controller time: the overhead the disk controller imposes in
performing a disk 1/0 access (typically < .2 ms)

~—Platter
Head

SSD (Solid State Drive)

SSD (Solid State Drive)

Reliability ({§%81%) , Availability

= Reliability — measured by the mean time to failure
(Fa#fESHF 4, MTTF). Service interruption is
measured by mean time to repair (&1 RS,
MTTR)
= Availability (FRASE T 1)
Availability = MTTE / (MTTF + MTTR)

= To increase MTTF, either improve the quality of the
components or design the system to continue operating
in the presence of faulty components
1+ Fault avoidance: preventing fault occurrence by construction

2. Fault tolerance: using redundancy to correct or bypass faulty
components (hardware)

RAID: Disk Arrays

Redundant Array of Inexpensive Disks

= Arrays of small and inexpensive disks
= Increase potential throughput by having many disk drives
= Data is spread over multiple disk
= Multiple accesses are made to several disks at a time
= Reliability is lower than a single disk
= But availability can be improved by adding redundant
disks (RAID)

RAID: Level O (UM% L; Striping RSAE %)

[—1 [—1 [—1 [—
blk2 blk3

= Multiple smaller disks as opposed to one big disk
= Spreading the blocks over multiple disks — striping — means
that multiple blocks can be accessed in parallel increasing the
performance
= A 4 disk system gives four times the throughput of a 1 disk system
= Same cost as one big disk — assuming 4 small disks cost the
same as one big disk

= No redundancy, so what if one disk fails?

RAID: Level 1 (Redundancy via Mirroring)

‘

redundant (check) data

= Uses twice as many disks for redundancy
so there are always two copies of the data

= The number of redundant disks = the number of data disks
so twice the cost of one big disk

= writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

= What if one disk fails?
= If a disk fails, the system just goes to the “mirror” for the data

10

RAID: Level O+1 (Striping with Mirroring)

[——1 [—1 [—1 [—1 [—1 [—1 [— [——
bik2| |blk3 blk2| |blk3

redundant (check) data

= Combines the best of RAID 0 and RAID 1,
data is striped across four disks and mirrored to four disks
= Four times the throughput (due to striping)
= # redundant disks = # of data disks
so twice the cost of one big disk

= writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

= What if one disk fails?
= If a disk fails, the system just goes to the “mirror” for the data

11

RAID: Level 4 (Block-Interleaved Parity)

Block parity disk

Dy O a3 3
O

= Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks
= Four times the throughput (striping)
= # redundant disks = 1 X # of protection groups
= Supports “small reads” and “small writes” (reads and writes that
go to just one (or a few) data disk in a protection group)

12

Small Writes

= RAID 3
New D1 data

3 reads and
2 writes

involving a// — /s =

= RAID 4 small writes
New D1 data

2 reads and
2 writes
involving just
two disks

$\>

®
[s T —
13

RAID: Level 5 (Distributed Block-Interleaved Parity)

OO0oOogd

one of these assigned as the block parity disk

= Cost of higher availability still only 1/N but the parity
block can be located on any of the disks
so there is no single bottleneck for writes
= Still four times the throughput (striping)
= # redundant disks = 1 X # of protection groups

= Supports “small reads” and “small writes” (reads and writes
that go to just one (or a few) data disk in a protection group)
= Allows multiple simultaneous writes

14

Distributing Parity Blocks

RAID 4 RAID 5

&0 E0)
0]

=) (=D

(=) &D()

) (0 CD)

&0 (D)
&) ()

(& & W0
(D& @)

(

(&0

(
(

= By distributing parity blocks to all disks, some small
writes can be performed in parallel
15

Memory Hierarchy

Processor
I 4-8 bytes (word)
Increasing A
distance
from the 8-32 bytes
processor in
access time

‘ 1,024+ bytes (dNsk secfor = page)
Secondary Memory

(Relative) size of the memory at each level

16

Loading and Storing Bytes

= MIPS has two basic data transfer instructions for
accessing memory
Iw $t0, 4($s3) # load word from memory
sw $t0, 8($s3) # store word to memory
= The data is loaded into (Iw) or stored from (sw) a
register in the register file
= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

Lo [s it 16 bit offset

17

fil: 32E v D AE) Z2fH

0x00000000 00000000 00000000 00000000 000000002 = 010

OXFFFFFFFF 111111211 111121211 11212111 111111112 = 4,294,967,296 - 110

18

Virtual Memory ({xf8521&)

= Use main memory as a “cache” for
secondary memory
= Simplifies loading a program for execution
by providing for code relocation (i.e., the code
can be loaded anywhere in main memory)

= Provides the ability to easily run programs
larger than the size of physical memory
= Allows efficient and safe sharing of memory

Virtual Memory ({x#8521&)

= What makes it work? — again the Principle of Locality
= A program is likely to access a relatively small
portion of its address space during any period

of time

. Main memory
among multiple programs
19 20
Virtual Memory ({fx#85218) Two Programs Sharing Physical Memory
= A program’s address space is divided into pages (all one
= Each program is compiled into its own fixed size) or segments (variable sizes)
address space — = The starting location of each page (either in main memory or in
a “virtual” address space secondary memory) is contained in the program’s page table
. . h Program 1
" D_urlng run-time eacl . virtual address space
virtual address, VA ({R#87FL X) must be <
translated to a =) main memory
physical address, PA (7KL X) S s BN
[N§
Main memory
Program 2
virtual address space
— ~
<
«
21 ~ 22

Address Translation

= A virtual address is translated to a physical address by a
combination of hardware and software

Virtual Address (VA)

31 30 L 12 11 L 0
Virtual page number Page offset
‘ Physical page number Page offset ‘
29 S 12 11 0

Physical Address (PA)

= So each memory request first requires an address

translation from the virtual space to the physical space
23

Address Translation Mechanisms

page fault :
page is not in physical memory

Virtual page # _ Offset

Physical page #

Physical|page Main memory

base addr
//

Disk storage

olklolkloklklklklp|k|<

/'\M(\\/‘T\

Page Table (R—<%) in main memory "

(A e o]

Address Translation

[arErarre a—

Py g

Virtual Address (VA)

31 30 L 12 11 L 0
Virtual page number Page offset
‘ Physical page number ‘ Page offset ‘
29 A 12 11 0
Physical Address (PA)
s R=UHAX(E? R=TROAEYHAX(EL? £

Virtual Addressing with a Cache

= Thus it takes an extra memory access to translate a
virtual address to a physical address

| VA PA miss

Traps- Cache Main
lation Memory

1]

CPU

= This makes memory (cache) accesses very expensive

(if every access was really two accesses)

= The hardware fix is to use a Translation Lookaside

Buffer (TLB) — a small cache that keeps track of
recently used address mappings to avoid having to do a

page table lookup "

Virtual Addressing, the hardware fix

= The hardware fix is to use a Translation
Lookaside Buffer (TLB) (PRLRZ#/\vT7)

= a small cache that keeps track of recently used
address mappings to avoid having to do a page
table lookup

27

Making Address Translation Fast

Physical page

Virtual page #
ZM;| V__ Tag base addr
1 Y
1 o
1 L)
0 \
1 Iy ARNAN

R .
Physical page
base addr

Main memory

Disk storage

ok lolz|olk |k ke e e <

IR

Page Table

(in physical memory) 28

Translation Lookaside Buffers (TLBs)

= Just like any other cache, the TLB can be organized
as fully associative, set associative, or direct mapped

V | Virtual Page # | Physical Page # |Dirty | Ref

= TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)
= TLBs are typically not more than 128 to 256 entries even on
high end machines

29

A TLB in the Memory Hierarchy

Yat hit EA .
VA PA miss
AZalN
TLB Main
CPU Cache
Core Lookup Memory
missl hit
Trans-
lation
data

= A TLB miss —is it a page fault or merely a TLB miss?
= If the page is loaded into main memory, then the TLB miss can
be handled (in hardware or software) by loading the translation
information from the page table into the TLB
= Takes 10's of cycles to find and load the translation info into
the TLB
= If the page is not in main memory, then it's a true page fault
= Takes 1,000,000's of cycles to service a page fault 30

A TLB in the Memory Hierarchy

Yt hit %t
VA PA miss
TLB Main
cPU Lookup Cache Memory
missl hit
Trans-
lation
. data

= page fault : page is not in physical memory
= TLB misses are much more frequent than true page
faults

31

Two Machines’ TLB Parameters

Intel P4

AMD Opteron

TLB organization

1 TLB for instructions
and 1TLB for data
Both 4-way set
associative

Both use ~LRU
replacement

2 TLBs for instructions and
2 TLBs for data

Both L1 TLBs fully
associative with ~LRU
replacement

Both L2 TLBs are 4-way set

associative with round-robin
LRU

Both L1 TLBs have 40
entries

Both L2 TLBs have 512
entries

TBL misses handled in
hardware

Both have 128 entries

TLB misses handled in
hardware

32

TLB Event Combinations

TLB Page | Cache |Possible? Under what circumstances?
Table

Hit Hit Hit |Yes—what we want!

Hit Hit Miss | Yes — although the page table is not
checked if the TLB hits

Miss Hit Hit |Yes—TLB miss, PA in page table

Miss Hit Miss | Yes — TLB miss, PA in page table, but data
not in cache

Miss | Miss | Miss |Yes— page fault

Hit Miss | Miss/ |'mpossible —TLB translation not possible if

Hit page is not present in memory

Miss Miss Hit | !mpossible — data not allowed in cache if
page is not in memory

Reducing Translation Time

= Can overlap the cache access with the TLB access

= Works when the high order bits of the VA are used to access
the TLB while the low order bits are used as index into cache

Block offset

2-way Associative Cache

Index
VA Ta PA
g Tag [Tag| Data [Tag| Data
l PA Tag
TLB Hit .

Cache Hit Desired word 34

A TLB in the Memory Hierarchy

Ya t hit Yat
VA PA miss
TLB Main
cPU Lookup Cache Memory
missl hit
Trans-
lation
data

= page fault : page is not in physical memory
= TLB misses are much more frequent than true page
faults

35

Why Not a Virtually Addressed Cache?

= A virtually addressed cache would only require
address translation on cache misses

Trans- Main
CPU lation Memory
|
hit

data

but
= Two different virtual addresses can map to the same physical
address (when processes are sharing data),
= Two different cache entries hold data for the same physical
address — synonyms (5l4)

= Must update all cache entries with the same physical address or the
memory becomes inconsistent %

The Hardware/Software Boundary

= What parts of the virtual to physical address translation
is done by or assisted by the hardware?

= Translation Lookaside Buffer (TLB) that caches the
recent translations

= TLB access time is part of the cache hit time

= May cause an extra stage in the pipeline for TLB
access

= Page table storage, fault detection and updating

= Page faults result in interrupts (precise) that
are then handled by the OS

= Hardware must support (i.e., update
appropriately) Dirty and Reference bits (e.g.,
~LRU) in the Page Tables

37

Summary

The Principle of Locality:
= Program likely to access a relatively small portion of the
address space at any instant of time.
=« Temporal Locality: Locality in Time
= Spatial Locality: Locality in Space
Caches, TLBs, Virtual Memory all understood by
examining how they deal with the four questions
1. Where can block be placed?
2. How is block found?
s What block is replaced on miss?
4. How are writes handled?

Page tables map virtual address to physical address

= TLBs are important for fast translation
38

