
1

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

１０．主記憶とファイルメモリの管理，
多重仮想記憶，記憶保護

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-07-09

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

3

Disk Drives

To access data:
seek time （シーク時間）: position head over the proper track
rotational latency （回転待ち時間）: wait for desired sector
transfer time （転送時間）: grab the data (one or more sectors)
Controller time（制御時間）: the overhead the disk controller
imposes in performing a disk I/O access

Platter

Track

Platters

Sectors

TracksSector
Track

Cylinder

Head
Platter

Controller
+

Cache

44

Magnetic Disk Characteristic

Disk read/write components
1. Seek time: position the head over the

proper track (3 to 14 ms avg)
due to locality of disk references
the actual average seek time may
be only 25% to 33% of the
advertised number

2. Rotational latency: wait for the desired sector to rotate
under the head (½ of 1/RPM converted to ms)

0.5/5400RPM = 5.6ms to 0.5/15000RPM = 2.0ms
3. Transfer time: transfer a block of bits (one or more sectors)

under the head to the disk controller’s cache (30 to 80 MB/s
are typical disk transfer rates)

4. Controller time: the overhead the disk controller imposes in
performing a disk I/O access (typically < .2 ms)

Sector
Track

Cylinder

Head
Platter

Controller
+

Cache

5

SSD (Solid State Drive)

6

SSD (Solid State Drive)

2

77

Reliability（信頼性）, Availability

Reliability – measured by the mean time to failure
(平均故障寿命，MTTF). Service interruption is
measured by mean time to repair (平均修復時間，
MTTR)
Availability（アベイラビリティ）

Availability = MTTF / (MTTF + MTTR)

To increase MTTF, either improve the quality of the
components or design the system to continue operating
in the presence of faulty components
1. Fault avoidance: preventing fault occurrence by construction
2. Fault tolerance: using redundancy to correct or bypass faulty

components (hardware)

88

RAID: Disk Arrays

Arrays of small and inexpensive disks
Increase potential throughput by having many disk drives

Data is spread over multiple disk
Multiple accesses are made to several disks at a time

Reliability is lower than a single disk
But availability can be improved by adding redundant
disks (RAID)

Redundant Array of Inexpensive Disks

99

RAID: Level 0 (冗長性なし; Striping ストライピング)

Multiple smaller disks as opposed to one big disk
Spreading the blocks over multiple disks – striping – means
that multiple blocks can be accessed in parallel increasing the
performance

A 4 disk system gives four times the throughput of a 1 disk system

Same cost as one big disk – assuming 4 small disks cost the
same as one big disk

No redundancy, so what if one disk fails?

blk1 blk3blk2 blk4

1010

RAID: Level 1 (Redundancy via Mirroring)

Uses twice as many disks for redundancy
so there are always two copies of the data

The number of redundant disks = the number of data disks
so twice the cost of one big disk

writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

What if one disk fails?
If a disk fails, the system just goes to the “mirror” for the data

blk1.1 blk1.3blk1.2 blk1.4 blk1.1 blk1.2 blk1.3 blk1.4

redundant (check) data

1111

RAID: Level 0+1 (Striping with Mirroring)

Combines the best of RAID 0 and RAID 1,
data is striped across four disks and mirrored to four disks

Four times the throughput (due to striping)
redundant disks = # of data disks
so twice the cost of one big disk

writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

What if one disk fails?
If a disk fails, the system just goes to the “mirror” for the data

blk1 blk3blk2 blk4 blk1 blk2 blk3 blk4

redundant (check) data

1212

RAID: Level 4 (Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks

Four times the throughput (striping)
redundant disks = 1 × # of protection groups
Supports “small reads” and “small writes” (reads and writes that
go to just one (or a few) data disk in a protection group)

Block parity disk

blk1 blk2 blk3 blk4

3

1313

Small Writes

RAID 3
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

⊕3 reads and
2 writes

involving all
the disks

RAID 4 small writes
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

2 reads and
2 writes

involving just
two disks

⊕
⊕

XOR

1414

RAID: Level 5 (Distributed Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity
block can be located on any of the disks
so there is no single bottleneck for writes

Still four times the throughput (striping)
redundant disks = 1 × # of protection groups
Supports “small reads” and “small writes” (reads and writes
that go to just one (or a few) data disk in a protection group)
Allows multiple simultaneous writes

one of these assigned as the block parity disk

1515

Distributing Parity Blocks

By distributing parity blocks to all disks, some small
writes can be performed in parallel

1 2 3 4 P0

5 6 7 8 P1

9 10 11 12 P2

13 14 15 16 P3

RAID 4 RAID 5

1 2 3 4 P0

5 6 7 P1 8

9 10 P2 11 12

13 P3 14 15 16

16

Memory Hierarchy

Increasing
distance
from the
processor in
access time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes
(block)

17

Loading and Storing Bytes

op rs rt 16 bit offset

MIPS has two basic data transfer instructions for
accessing memory
lw $t0, 4($s3) # load word from memory

sw $t0, 8($s3) # store word to memory

The data is loaded into (lw) or stored from (sw) a
register in the register file
The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

18

例：３２ビットのメモリ空間

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112 = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

4

19

Virtual Memory （仮想記憶）

Use main memory as a “cache” for
secondary memory

Simplifies loading a program for execution
by providing for code relocation (i.e., the code
can be loaded anywhere in main memory)
Provides the ability to easily run programs
larger than the size of physical memory
Allows efficient and safe sharing of memory
among multiple programs

Main memory

20

Virtual Memory （仮想記憶）

What makes it work? – again the Principle of Locality

A program is likely to access a relatively small
portion of its address space during any period
of time

21

Virtual Memory （仮想記憶）

Each program is compiled into its own
address space –
a “virtual” address space

During run-time each
virtual address, VA （仮想アドレス） must be
translated to a
physical address, PA （物理アドレス）

Main memory

22

Two Programs Sharing Physical Memory

Program 1
virtual address space

main memory

A program’s address space is divided into pages (all one
fixed size) or segments (variable sizes)

The starting location of each page (either in main memory or in
secondary memory) is contained in the program’s page table

Program 2
virtual address space

23

Address Translation

Virtual Address (VA)

Page offsetVirtual page number
31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

So each memory request first requires an address
translation from the virtual space to the physical space

A virtual address is translated to a physical address by a
combination of hardware and software

24

Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表） in main memory

Offset

Physical page #

Offset

page fault :
page is not in physical memory

5

25

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

ページサイズは？ ページ表のメモリサイズは？

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表）
(in main memory)

Offset

Physical page #

Offset

26

Virtual Addressing with a Cache

Thus it takes an extra memory access to translate a
virtual address to a physical address

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

This makes memory (cache) accesses very expensive
(if every access was really two accesses)
The hardware fix is to use a Translation Lookaside
Buffer (TLB) – a small cache that keeps track of
recently used address mappings to avoid having to do a
page table lookup

27

Virtual Addressing, the hardware fix

The hardware fix is to use a Translation
Lookaside Buffer (TLB) （アドレス変換バッファ）

a small cache that keeps track of recently used
address mappings to avoid having to do a page
table lookup

28

Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag
Physical page

base addrV

TLB

Page Table
(in physical memory)

29

Translation Lookaside Buffers (TLBs)

Just like any other cache, the TLB can be organized
as fully associative, set associative, or direct mapped

V Virtual Page # Physical Page # Dirty Ref

TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)

TLBs are typically not more than 128 to 256 entries even on
high end machines

30

A TLB in the Memory Hierarchy

A TLB miss – is it a page fault or merely a TLB miss?
If the page is loaded into main memory, then the TLB miss can
be handled (in hardware or software) by loading the translation
information from the page table into the TLB

Takes 10’s of cycles to find and load the translation info into
the TLB

If the page is not in main memory, then it’s a true page fault
Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

6

31

A TLB in the Memory Hierarchy

page fault : page is not in physical memory
TLB misses are much more frequent than true page
faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

32

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions
and 1TLB for data
Both 4-way set
associative
Both use ~LRU
replacement

Both have 128 entries

TLB misses handled in
hardware

2 TLBs for instructions and
2 TLBs for data
Both L1 TLBs fully
associative with ~LRU
replacement
Both L2 TLBs are 4-way set
associative with round-robin
LRU
Both L1 TLBs have 40
entries
Both L2 TLBs have 512
entries
TBL misses handled in
hardware

33

TLB Event Combinations

TLB Page
Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/
Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data
not in cache

Yes – page fault
Impossible – TLB translation not possible if
page is not present in memory

Impossible – data not allowed in cache if
page is not in memory

34

Reducing Translation Time

Can overlap the cache access with the TLB access
Works when the high order bits of the VA are used to access
the TLB while the low order bits are used as index into cache

Tag Data

=

Tag Data

=

Cache Hit Desired word

VA Tag PA
Tag

TLB Hit

2-way Associative Cache
Index

PA Tag

Block offset

35

A TLB in the Memory Hierarchy

page fault : page is not in physical memory
TLB misses are much more frequent than true page
faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

36

Why Not a Virtually Addressed Cache?

A virtually addressed cache would only require
address translation on cache misses

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

but
Two different virtual addresses can map to the same physical
address (when processes are sharing data),
Two different cache entries hold data for the same physical
address – synonyms （別名）

Must update all cache entries with the same physical address or the
memory becomes inconsistent

7

37

The Hardware/Software Boundary

What parts of the virtual to physical address translation
is done by or assisted by the hardware?

Translation Lookaside Buffer (TLB) that caches the
recent translations

TLB access time is part of the cache hit time
May cause an extra stage in the pipeline for TLB
access

Page table storage, fault detection and updating
Page faults result in interrupts (precise) that
are then handled by the OS
Hardware must support (i.e., update
appropriately) Dirty and Reference bits (e.g.,
~LRU) in the Page Tables

38

Summary

The Principle of Locality:
Program likely to access a relatively small portion of the
address space at any instant of time.

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Caches, TLBs, Virtual Memory all understood by
examining how they deal with the four questions
1. Where can block be placed?
2. How is block found?
3. What block is replaced on miss?
4. How are writes handled?
Page tables map virtual address to physical address

TLBs are important for fast translation

