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Disk Drives

To access data:
seek time （シーク時間）:  position head over the proper track
rotational latency （回転待ち時間）:  wait for desired sector
transfer time （転送時間）:  grab the data  (one or more sectors)
Controller time（制御時間）: the overhead the disk controller 
imposes in performing a disk I/O access 
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Magnetic Disk Characteristic

Disk read/write components
1. Seek time: position the head over the                                    

proper track (3 to 14 ms avg)
due to locality of disk references                              
the actual average seek time may                                
be only 25% to 33% of the                                       
advertised number

2. Rotational latency:  wait for the desired sector to rotate 
under the head (½ of 1/RPM converted to ms)

0.5/5400RPM = 5.6ms to       0.5/15000RPM = 2.0ms
3. Transfer time:  transfer a block of bits (one or more sectors) 

under the head to the disk controller’s cache (30 to 80 MB/s
are typical disk transfer rates)

4. Controller time:  the overhead the disk controller imposes in 
performing a disk I/O access (typically < .2 ms)
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SSD (Solid State Drive)

6

SSD (Solid State Drive)
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Reliability（信頼性）, Availability

Reliability – measured by the mean time to failure
(平均故障寿命，MTTF).  Service interruption is 
measured by mean time to repair (平均修復時間，
MTTR)
Availability（アベイラビリティ）

Availability = MTTF / (MTTF + MTTR)

To increase MTTF, either improve the quality of the 
components or design the system to continue operating 
in the presence of faulty components
1. Fault avoidance:  preventing fault occurrence by construction
2. Fault tolerance:  using redundancy to correct or bypass faulty 

components (hardware)
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RAID:  Disk Arrays

Arrays of small and inexpensive disks
Increase potential throughput by having many disk drives

Data is spread over multiple disk
Multiple accesses are made to several disks at a time

Reliability is lower than a single disk
But availability can be improved by adding redundant 
disks (RAID)

Redundant Array of Inexpensive Disks
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RAID: Level 0 (冗長性なし; Striping ストライピング)

Multiple smaller disks as opposed to one big disk
Spreading the blocks over multiple disks – striping – means 
that multiple blocks can be accessed in parallel increasing the 
performance 

A 4 disk system gives four times the throughput of a 1 disk system

Same cost as one big disk – assuming 4 small disks cost the 
same as one big disk

No redundancy, so what if one disk fails?

blk1 blk3blk2 blk4
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RAID: Level 1 (Redundancy via Mirroring)

Uses twice as many disks for redundancy 
so there are always two copies of the data

The number of redundant disks = the number of data disks  
so twice the cost of one big disk

writes have to be made to both sets of disks, 
so writes would be only 1/2 the performance of RAID 0

What if one disk fails?
If a disk fails, the system just goes to the “mirror” for the data

blk1.1 blk1.3blk1.2 blk1.4 blk1.1 blk1.2 blk1.3 blk1.4

redundant (check) data
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RAID: Level 0+1 (Striping with Mirroring)

Combines the best of RAID 0 and RAID 1, 
data is striped across four disks and mirrored to four disks

Four times the throughput (due to striping)
# redundant disks = # of data disks  
so twice the cost of one big disk

writes have to be made to both sets of disks, 
so writes would be only 1/2 the performance of RAID 0

What if one disk fails?
If a disk fails, the system just goes to the “mirror” for the data

blk1 blk3blk2 blk4 blk1 blk2 blk3 blk4

redundant (check) data
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RAID: Level 4 (Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity is 
stored as blocks associated with sets of data blocks

Four times the throughput (striping)
# redundant disks = 1 × # of protection groups
Supports “small reads” and “small writes” (reads and writes that 
go to just one (or a few) data disk in a protection group) 

Block parity disk

blk1 blk2 blk3 blk4
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Small Writes

RAID 3
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

⊕3 reads and        
2 writes

involving all
the disks

RAID 4 small writes
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

2 reads and        
2 writes

involving just 
two disks

⊕
⊕

XOR
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RAID: Level 5 (Distributed Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity 
block can be located on any of the disks 
so there is no single bottleneck for writes

Still four times the throughput (striping)
# redundant disks = 1 × # of protection groups
Supports “small reads” and “small writes” (reads and writes 
that go to just one (or a few) data disk in a protection group)
Allows multiple simultaneous writes

one of these assigned as the block parity disk
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Distributing Parity Blocks

By distributing parity blocks to all disks, some small 
writes can be performed in parallel

1         2          3          4         P0

5         6          7          8         P1

9        10         11       12        P2

13       14        15        16        P3

RAID 4 RAID 5

1         2          3          4         P0 

5         6          7         P1         8

9        10        P2       11        12

13       P3        14        15        16
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Memory Hierarchy

Increasing 
distance 
from the 
processor in 
access time

L1$

L2$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes 
(block)
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Loading and Storing Bytes

op            rs rt 16 bit offset

MIPS has two basic data transfer instructions for 
accessing memory
lw $t0, 4($s3)  # load word from memory

sw $t0, 8($s3)  # store word to memory

The data is loaded into (lw) or stored from (sw) a 
register in the register file
The memory address – a 32 bit address – is formed by 
adding the contents of the base address register to the 
offset value

18

例：３２ビットのメモリ空間

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112  = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF
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Virtual Memory （仮想記憶）

Use main memory as a “cache” for 
secondary memory

Simplifies loading a program for execution 
by providing for code relocation (i.e., the code 
can be loaded anywhere in main memory)
Provides the ability to easily run programs
larger than the size of physical memory
Allows efficient and safe sharing of memory 
among multiple programs

Main memory
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Virtual Memory （仮想記憶）

What makes it work?  – again the Principle of Locality

A program is likely to access a relatively small 
portion of its address space during any period 
of time
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Virtual Memory （仮想記憶）

Each program is compiled into its own 
address space –
a “virtual” address space

During run-time each 
virtual address, VA （仮想アドレス） must be 
translated to a 
physical address, PA （物理アドレス）

Main memory
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Two Programs Sharing Physical Memory

Program 1
virtual address space

main memory

A program’s address space is divided into pages (all one 
fixed size) or segments (variable sizes)

The starting location of each page (either in main memory or in 
secondary memory) is contained in the program’s page table

Program 2
virtual address space
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Address Translation

Virtual Address (VA)

Page offsetVirtual page number
31  30                          .  .  .                         12  11          .  .  .          0

Page offsetPhysical page number

Physical Address (PA)
29                        .  .  .                               12  11                            0

Translation

So each memory request first requires an address 
translation from the virtual space to the physical space

A virtual address is translated to a physical address by a 
combination of hardware and software
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Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表） in main memory

Offset

Physical page #

Offset

page fault : 
page is not in physical memory
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Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31  30                          .  .  .                         12  11          .  .  .          0

Page offsetPhysical page number

Physical Address (PA)
29                        .  .  .                               12  11                            0

Translation

ページサイズは？ ページ表のメモリサイズは？

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表）
(in main memory)

Offset

Physical page #

Offset
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Virtual Addressing with a Cache

Thus it takes an extra memory access to translate a 
virtual address to a physical address

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

This makes memory (cache) accesses very expensive
(if every access was really two accesses)
The hardware fix is to use a Translation Lookaside
Buffer (TLB) – a small cache that keeps track of 
recently used address mappings to avoid having to do a 
page table lookup
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Virtual Addressing, the hardware fix

The hardware fix is to use a Translation 
Lookaside Buffer (TLB) （アドレス変換バッファ）

a small cache that keeps track of recently used 
address mappings to avoid having to do a page 
table lookup
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Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag
Physical page

base addrV

TLB

Page Table
(in physical memory)
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Translation Lookaside Buffers (TLBs)

Just like any other cache, the TLB can be organized 
as fully associative, set associative, or direct mapped

V    Virtual Page #      Physical Page #    Dirty    Ref

TLB access time is typically smaller than cache access 
time (because TLBs are much smaller than caches)

TLBs are typically not more than 128 to 256 entries even on 
high end machines
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A TLB in the Memory Hierarchy

A TLB miss – is it a page fault or merely a TLB miss? 
If the page is loaded into main memory, then the TLB miss can 
be handled (in hardware or software) by loading the translation 
information from the page table into the TLB

Takes 10’s of cycles to find and load the translation info into 
the TLB

If the page is not in main memory, then it’s a true page fault
Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t
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A TLB in the Memory Hierarchy

page fault : page is not in physical memory
TLB misses are much more frequent than true page 
faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

32

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions 
and 1TLB for data
Both 4-way set 
associative
Both use ~LRU 
replacement                         

Both have 128 entries

TLB misses handled in 
hardware

2 TLBs for instructions and 
2 TLBs for data
Both L1 TLBs fully 
associative with ~LRU 
replacement
Both L2 TLBs are 4-way set 
associative with round-robin 
LRU
Both L1 TLBs have 40 
entries
Both L2 TLBs have 512 
entries
TBL misses handled in 
hardware
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TLB Event Combinations

TLB Page 
Table

Cache Possible?  Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/
Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not 
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data
not in cache

Yes – page fault
Impossible – TLB translation not possible if
page is not present in memory

Impossible – data not allowed in cache if 
page is not in memory
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Reducing Translation Time

Can overlap the cache access with the TLB access
Works when the high order bits of the VA are used to access 
the TLB while the low order bits are used as index into cache

Tag Data

=

Tag Data

=

Cache Hit Desired word

VA Tag PA
Tag

TLB Hit

2-way Associative Cache
Index

PA Tag

Block offset
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A TLB in the Memory Hierarchy

page fault : page is not in physical memory
TLB misses are much more frequent than true page 
faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t
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Why Not a Virtually Addressed Cache?

A virtually addressed cache would only require 
address translation on cache misses

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

but
Two different virtual addresses can map to the same physical 
address (when processes are sharing data), 
Two different cache entries hold data for the same physical 
address – synonyms （別名）

Must update all cache entries with the same physical address or the 
memory becomes inconsistent
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The Hardware/Software Boundary

What parts of the virtual to physical address translation 
is done by or assisted by the hardware?

Translation Lookaside Buffer (TLB) that caches the 
recent translations

TLB access time is part of the cache hit time
May cause an extra stage in the pipeline for TLB 
access

Page table storage, fault detection and updating
Page faults result in interrupts (precise) that 
are then handled by the OS
Hardware must support (i.e., update 
appropriately) Dirty and Reference bits (e.g., 
~LRU) in the Page Tables
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Summary

The Principle of Locality:
Program likely to access a relatively small portion of the 
address space at any instant of time.

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Caches, TLBs, Virtual Memory all understood by 
examining how they deal with the four questions
1. Where can block be placed?
2. How is block found?
3. What block is replaced on miss?
4. How are writes handled?
Page tables map virtual address to physical address

TLBs are important for fast translation


