
1

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

２．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-04-30

2
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

3

レポート 問題

1. 部品を組み合わせて計算機（パソコン）を自作したい．

適切な（個人の主観でかまわない）部品と構成を提案せ

よ．

提案構成できちんと動作することを説明せよ．

また，構成の特徴を魅力的に説明せよ．

1. 予算は５万円以内とする．

それぞれの部品の価格をＷｅｂにて調査すること．

2. オペレーティングシステムとして Linux が動作すること．

利用目的とその意義を明確にすること．

3. 計算機本体のみとする．ディスプレイやキーボードは不要．

4. レポートはＡ４用紙 ２枚以内にまとめること．

4

レポート 提出方法

４月２７日（午後１１時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

斬新または魅力的な計算機構成であれば高得点

report_at_arch.cs.titech.ac.jp (_at_ を @ に置き換える)

電子メールのタイトル
ArchReport [学籍番号]

電子メールの内容
氏名，学籍番号

回答

テキスト形式，あるいはＰＤＦファイルを添付

Ａ４用紙で２枚以内にまとめること．

5

第１回 レポートの提出状況

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

DATE

S
C
O
R
E

6

参考書（読んでください）

コンピュータの構成と設計 第３版、パター
ソン＆ヘネシー（成田光彰 訳）、 日経ＢＰ
社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995

2

7

参考書（大学院生がターゲット，興味があれば）

コンピュータの構成と設計 第３版、
パターソン＆ヘネシー（成田光彰 訳）、
日経ＢＰ社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995

8

参考書（アセンブラに興味があれば）

MIPSのアセンブラがよくわかります．面白いです． MIPSとLinuxの間がわかります．お勧め．

9

ただしい講義の受け方？

どんどん質問する！ ＞＞ 活発な講義！

難しい！

わからない時は ．．．

わからない顔をする！

不満のある時は．．．

不満のある顔をする！

わかった時は．．．

うなずく！

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

２．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

11

コンピュータ（ハードウェア）の古典的な要素

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価

命令セットアーキテクチャ

12
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Instruction Set Architecture (ISA) Type Sales

0

200

400

600

800

1000

1200

1400

1998 1999 2000 2001 2002

Other
SPARC
Hitachi SH
PowerPC
Motorola 68K
MIPS
IA-32
ARM

PowerPoint “comic” bar chart with approximate values (see text for correct values)

M
ill

io
ns

 o
f P

ro
ce

ss
or

3

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Where is the Market?

290

93
3

488

114
3

892

135
4

862

129
4

1122

131
5

0

200

400

600

800

1000

1200

1998 1999 2000 2001 2002

Embedded
Desktop
Servers

M
ill

io
ns

 o
f C

om
pu

te
rs

14
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

RISC - Reduced Instruction Set Computer

RISC philosophy
fixed instruction lengths
load-store instruction sets
limited addressing modes
limited operations

Sun SPARC, HP PA-RISC, IBM PowerPC,
Compaq Alpha, MIPS, …

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,
memory space (embedded systems)

CISC
Complex Instruction Set Computer

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS R3000 Instruction Set Architecture (ISA)

Instruction Categories
Computational
Load / Store
Jump and Branch
Floating Point

coprocessor

Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format
16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: MIPS Register Convention

n.a.reserved for assembler1$at

yesreturn addr (hardware)31$ra

yesframe pointer30$fp

yesstack pointer29$sp

yesglobal pointer28$gp

notemporaries24-25$t8 - $t9

yessaved values16-23$s0 - $s7

notemporaries8-15$t0 - $t7

yesarguments4-7$a0 - $a3

noreturned values2-3$v0 - $v1

n.a.constant 0 (hardware)0$zero

Preserve
on call?

UsageRegister
Number

Name

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Those operands are contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $
Operand order is fixed (destination first)

18
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Operand order is fixed (destination first)
Those operands are contained in the
register file ($t0,$s1,$s2) – indicated by $

4

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Instructions, like registers and words of data,
are 32 bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode
20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

Small constants are used often in typical code
Possible approaches?

put “typical constants” in memory and load them
create hard-wired registers (like $zero) for constants like 1
have special instructions that contain constants !

The constant is kept inside the instruction itself!
Immediate format limits values to the range +215–1 to -215

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

22
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 48ページ）

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

add $t0, $s1, $s2 # $t0 = (g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for
accessing memory
lw $t0, 4($s3) # load word from memory

sw $t0, 8($s3) # store word to memory

The data is loaded into (lw) or stored from (sw) a
register in the register file
The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

A 16-bit field is limited to memory locations within a region of
±213 or 8,192 words (±215 or 32,768 bytes) of the address in the
base register

24
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Load / Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

5

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

26
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 50ページ）

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g = h + $t0

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

28
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 51ページ）

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

29
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?
30

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register? Instruction Address Register (the PC)

its use is automatically implied by instruction
PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

limits the branch distance to -215 to +215-1 instructions from the
(instruction after the) branch instruction, but most branches are
local anyway

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

6

31
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt

Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0

Instruction format (R format):

More Branch Instructions

op rs rt rd funct

32
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

More Branch Instructions, Con’t

Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

less than blt $s1, $s2, Label

less than or equal to ble $s1, $s2, Label

greater than bgt $s1, $s2, Label

great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

Its why the assembler needs a reserved register ($at)

33
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

34
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 64ページ）

f, g, h, i, j は変数である．それぞれを $s0 から $s4に
割り付ける．このコードをコンパイルした結果を示せ．

if (i == j) f = g + h; else f = g – h;

35
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 64ページ）

f, g, h, i, j は変数である．それぞれを $s0 から $s4に
割り付ける．このコードをコンパイルした結果を示せ．

if (i == j) f = g + h; else f = g – h;

bne $s3, $s4, Else # if (i!=j) goto Else
add $s0, $s1, $s2 # f = g + h
j Exit # goto Exit

Else:
sub $s0, $s1, $s2 # f = g - h

Exit:
36

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

ループを利用して１から１００までの合計値を求めるア

センブラを示せ．

氏名，学籍番号，
学籍番号マーク欄(右詰で)

7

37
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: Branching Far Away

What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes
bne $s0, $s1, L2
j L1

L2:

38
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS procedure call instruction:
jal Procedure-Address #jump and link

Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return
Machine format (J format):

Then can do procedure return with a
jr $ra #return

Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct

39
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions
a new "load upper immediate" instruction

lui $t0, 1010101010101010

Then must get the lower order bits right, use
ori $t0, $t0, 1010101010101010

Aside: How About Larger Constants?

16 0 8 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010
40

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS ISA So Far

$s1 = $s2 v 6ori $s1, $s2, 613or immediate

if ($s2<6) $s1=1 else
$s1=0

slti $s1, $s2, 610set on less than
immediate

$s1 = 6 * 216lui $s1, 615load upper imm

$s1 = $s2 + 6addi $s1, $s2, 68add immediate

go to 10000; $ra=PC+4jal 25003jump and link

go to $t1jr $t10 and 8jump register

go to 10000j 25002jumpUncond.
Jump (J &
R format)

if ($s2<$s3) $s1=1 else
$s1=0

slt $s1, $s2, $s30 and 42 set on less than

if ($s1 !=$s2) go to Lbne $s1, $s2, L5br on not equal

if ($s1==$s2) go to Lbeq $s1, $s2, L 4br on equalCond. Branch
(I & R
format)

Memory($s2+25) = $s1sb $s1, 25($s2)40store byte

$s1 = Memory($s2+25)lb $s1, 25($s2)32load byte

43

35

0 and 34

0 and 32

Op Code

Memory($s2+24) = $s1sw $s1, 24($s2)store word

$s1 = Memory($s2+24)lw $s1, 24($s2)load wordData Transfer
(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic
(R & I
format)

MeaningExampleInstrCategory

41
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

今日のまとめ, MIPS R3000 ISA

Instruction Categories
Computational
Load / Store
Jump and Branch
Floating Point
Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt Immediate (16bit)

jump target (26bit)

3 Instruction Formats: all 32 bits wide

R format

I format

J format
42

講義項目

計算機システムの基本構成と動作原理

(1) 命令形式，アドレス指定形式

(2) 命令形式，データ形式

メモリ１：半導体メモリシステム，ファイルメモリシステム

メモリ２：記憶階層，キャッシュシステム

メモリ３：仮想記憶システム（セグメンテーション，ページング，等）

メモリ４：主記憶とファイルメモリの管理，多重仮想記憶，記憶保護

割り込み１：割り込みの必要性，割り込みの種類

割り込み２：割り込み処理の流れ

入出力制御１：チャネル，チャネルプログラム方式

入出力制御２：入出力動作の流れ，チャネル動作の効率化

入出力制御３：チャネルの種類，通信制御

レポートと期末試験により評価

