2009-04-30

20094 Fii%#] TOKYO TECH

HEWT—FT0F 5 F—)

2. eimiR, TRLREERR

EH S HEIRER
kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

i Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

i LR— [ERE

1. BMREEASHOETHER (VI ZBELEL.

B (EADEBTHEDLEV) BBREBREREE

£.

REBRTEBALEMET S LEHBAE L.

F1=, BEROBHEEBANICHAE £

1. FHEIFSHFAUNETS.
ZNThOEBRDMEEWebIZTHET 5L

2. ARL—FTAVT VAT LELT Linux BBIET BT L.
FMABMEZOEREZHREICT DL,

3. HEMAREDHET D, TARTLAPF—K—

4. LiR—KFA4RMR 28LLRISEEDH BT L.

FIEFE.

i LAR—k R 7%

= 4A27H(FR11E)ETITEFA—ILTRY
= AKYHEITIRHEL TS (LR LEH R
= BHELIBANGHERBRTONEEER
= report_at_arch.cs.titech.ac.jp (_at_ % @ ICEE#25)

» BFA—ILDEARIL
= ArchReport [2E&E]
= KA FEES
« @E
« TXAMER, HBHLEPDFI7AILE R
« AAFRIET2HLANITEEDH D L.

i E1E LR—bDREIKR

SCORE

100

9.0

80

70

6.0

50

40

30

20

10

0.0

SEE GATIEE)

INR=P BT —

:IJI:":L—f'aJ

» OVEI—SDORBRLEER B, /32—
vyraari—(FEXE R). BEBP
#t. 2006
AVEL—E7—FToF v ERMTTO—F HaR
ki, 2008
AVEL—4TF—FF
HE@ %‘“ mtﬂq-ﬁ 1989

HJ: iﬂa, % BR%E, 1988
sokoz
L hEEE Bai; 1995
‘ma?—#raﬂ

WA R F BRE, 1995

i SEE (KRFRENS—7T v, BRI HHIL)

= AVEI—EF—FFIFr RRTTO—F BaR
#Mikit, 2008
AUE2—FT—FTIFY,
HE %~ & ERHSH, 1980
HERYRTATE
WE A HL WE E BRE, 1988
AVE1—EN—FH 27,
WE A BB %R BRE, 1995
HERT—FToF v,
AR ¥ E BRE, 1995

i BEE (T TIICERAHNIL)

k Robert L Britton
[LY L - SR

MIPSOT 22T SMEChMYET. BEVTT

Dominic Sweetman

MIPSELinuXDRIAYH N ET . S8

* =ELLVEEDRITA ?

» EAEABRITE! >> FREGER!
= BLLM!
= HAOSELEL . . .
« HHOSEVNEETSD !
« FEOHBEE. ..
« REDHDEETD !
» hbhofBE. . .
= YL

2009% RiI%:#] TOKYO TECH

* AEET—FTIF v E— (B)

2. mH, TRLREEERRX

HHE - HEIZER
kise_at_cs.titech.ac.jp
W6413EE= AKEH13:20 — 14:50

‘ AVE1—R(N\—FD1T7) DEAMGESR

ABITT—R BEEINT—FTIFY
avEa—4

Jotyy

AR

4
ietE
T—RIRR HA
11

i Instruction Set Architecture (ISA) Type Sales

O Other

B SPARC

B Hitachi SH

B PowerPC

H Motorola 68K
| MIPS

O1A-32

@ ARM

Millions of Processor
©
o
o
!

1998 1999 2000 2001 2002

PowerPoint “comic” bar chart with approximate values (see text for correct values)
12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Where is the Market?

B Embedded
1200 1127 O Desktop
] = servers
1000
8 892 862
3 800
£
8 600
b 488
[%2)
§ 4001550
S 200 93 14 35 29
3 3 4 4 5
0

1998 1999 2000 2001 2002

13

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

RISC - Reduced Instruction Set Computer

= RISC philosophy +—————— CISC
« fixed instruction lengths Complex Instruction Set Computer
= load-store instruction sets
= limited addressing modes
= limited operations

= Sun SPARC, HP PA-RISC, IBM PowerPC,
Compaq Alpha, MIPS, ...

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,
memory space (embedded systems)

14

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

MIPS R3000 Instruction Set Architecture (ISA)

= Instruction Categories Registers
= Computational
« Load / Store RO-R31
= Jump and Branch
= Floating Point
= Ccoprocessor
= Memory Management

= Special

3 Instruction Formats: all 32 bits wide

[op [rs [[rd [sa [funct |Rformat
[op [rs [[immediate | 1 format
‘ oP | jump target ‘ J format

15

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Aside: MIPS Register Convention

Name Register Usage Preserve

Number on call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

16

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

MIPS Arithmetic Instructions

= MIPS assembly language arithmetic statement
add $tO0, $sl1, $s2
sub $t0, $s1, $s2

= Each arithmetic instruction performs only one

operation
= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination « sourcel op source2

Those operands are contained in the datapath’s
register file ($t0,$s1,$s2) — indicated by $
= Operand order is fixed (destination first)

17

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

MIPS Arithmetic Instructions

= MIPS assembly la ithmetic statement

operation

= Each arithmetic ingtruction fits in 32 bits and specifies
exactly three operands

destirfation <« sourcel source2

= Operand order is fixed (destination first)
= Those operands are contained in the
register file ($t0,$s1,%$s2) — indicated by $

18

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Machine Language - Add Instruction

= Instructions, like registers and words of data,
are 32 bits long

= Arithmetic Instruction Format (R format):

g $s2
‘ OD(‘ s ‘ rt ‘ rd ‘ shamt ‘ funct ‘
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result's destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode
19

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4 #Psp = $sp + 4
slti $t0, $s2, 15 #$t0 = 1 if $s2<15
= Machine format (I format):

[op [s [| 16 bit immediate I format

= The constant is kept inside the instruction itself!
= Immediate format limits values to the range +215-1 to -2%5

20

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

= f=(g+h)-(i+]j)

f,g, h i, jZEFhEhLRE $s0, $s1, $s2, $s3, $s4
IZEIYfHIT5ET 5.
EDRTF—AVREIV A ILLT=EERDMIPST)
r—ar-a—KRIEESREH.

21

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

HE (BFE 48~R—0)

= f=(g+h)-(i+]j)

f,g, h i, jZEFhEhLRAE $s0, $s1, $s2, $s3, $s4
IZEIYfTIT5ET 5.
EDRF—AVNEIV A ILLT=EERDMIPST T
r—ar-a—KRIEESESEH.

add $t0, $s1, $s2 #$t0= (g +h)
add $t1, $s3, $s4 #
sub $s0, $tO, $t1 #

22
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory

Iw $t0, 4($s3) # load word from memory
sw $t0, 8($s3) # store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file

= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value
= A 16-bit field is limited to memory locations within a region of

+213 or 8,192 words (+215 or 32,768 bytes) of the address in the
base register

23

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load / Store Instruction Format (I format):
Iw $t0,; 24($s2)

‘ op rs ‘ rt ‘ 16 bit offset ‘
Memory

24,, + $s2 = OXFFFfFEef

... 0001 1000 $10| — [0x120040ac
+...1001 0100
...1010 1100 = $s2— 0x12004094
0x120040ac

0x0000000¢

0x00000008

0x00000004

0x00000000

data word address (hex) 24

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

BEE

= g=h+A[8]
100EBED LR AELSIAN®H D ET D, Eiz, AVINATIEE
#9, h [CLP R4 $s1, $s2 ZEIYMHD. SHICEESID
BAIAT7RL R (& $s3 [SHIHONTNDET B.
EDRTF—I AV REO IS ILE L.

25

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

i BE (BBE 50N—Y)

= g=h+A[8]
100ED LR AELSIAN®H D ET D, £z, AVINATIEXE
#9, h [CLP R4 $s1, $s2 ZEIYMIH5D. SHICEESID
BAIAT7RL R (& $s3 [SHIHONTNDET B.
EDRTF—I A REO IS ILE L.

w $t0, 32($s3)
add $si1, $s2, $t0

$t0 = A[8]
#g=h+$t0

26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

= A[12] = h + A[8]

100FEM S RBEFIAN HDET D, Tz, A /(FIFE
#g, h ISLPR4E $s1, $s2 #ENYFT5. SHICERFID
B 7KL R (& $s3 ISHIOON TV ET .
EDRTF—IAVRET IS ILE K.

27

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

g 5B SERS)

= A[12] = h + A[8]

100FEM S RBEFIAN HDET D, Fiz, A /(FIFE
#g, h ISLPOR4E $s1, $s2 #ENYFT5. SHICERFID
B 7KL R (& $s3 ISHOON TV ET .
EDRTF—EAVRET IS ILE K.

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

‘ MIPS Control Flow Instructions

= MIPS conditional branch instructions:
bne $s0, $sl1l, Lbl #go to Lbl if $s0=$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

= Ex: if (i==j) h=1i+ j;
bne $s0, $sl1, Lbll

add $s3, $s0, $sl
Lbl1:

= Instruction Format (I format):

‘ op ‘ rs ‘ rt ‘ 16 bit offset ‘

= How is the branch destination address specified?
29

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Specifying Branch Destinations

= Use a register (like in lw and sw) added to the 16-bit offset
= which register? Instruction Address Register (the PC)
= its use is automatically implied by instruction
= PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction
= limits the branch distance to -2'5 to +2%5-1 instructions from the
(instruction after the) branch instruction, but most branches are

local anyway from the low order 16 bits of the branch instruction
16

branch dst

32 32 add address
Y=Y R -7 32
B 32
30

* More Branch Instructions

= We have beq, bne, but what about other kinds of

brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt

= Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0
= Instruction format (R format):
‘ op ‘ rs ‘ rt ‘ rd ‘ ‘funct ‘

31

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

* More Branch Instructions, Con’t

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label

slt $at, $sl, $s2 # $at set to 1 if
bne $at, $zero, Label # $sl < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= greatthan orequalto bge $s1, $s2, Label

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
= Its why the assembler needs a reserved register ($at)

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

32

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

= Instruction Format (J Format):

‘ op ‘ 26-bit address

from the low order 26 bits of the jump instruction

33

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

HE (55 E 6aN—D)

= f,0,h 0| [FEHRTHD. ThEnh%E $s0 Hi5 $s4I<
BUfF5E. SOIA—FZIV NS IILLEHERERE.

if(i==j) f=g+h; elsef=g—h;

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

HE (BFE 6an—D)

= f,0,h 0| [FEHTHD. ThEn%E $s0 Hi5 $s4i<
BUFFS. SOIA—FRZIV NS IILLEFHERERE.

if(i==j) f=g+h; elsef=g—h;

bne $s3, $s4, Else # if (i'=j) goto Else
add $s0, $s1, $s2 #f=g+h
j Exit # goto Exit
Else:
sub $s0, $s1, $s2 #f=g-h
Exit:

35

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

BE

» L—TZEFIALTIANS100ETHDEHEEZRDDT
T ISERE.

K&, #HES,
FEEET—VMERET)

36
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Aside: Branching Far Away

= What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

Instructions for Accessing Procedures

= MIPS procedure call instruction:
jal Procedure-Address #jump and link
= Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

condition = Machine format (J format):
beq $s0, $s1, L1 [op | 26 bit address
becomes = Then can do procedure return with a
bne $s0, $s1, L2 jr s$ra #return
J L1 = Instruction format (R format):
L2:
‘ op ‘ rs ‘ ‘ ‘ ‘ funct ‘
37 38
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
Aside: How About Larger Constants? MIPS ISA So Far
= We'd also like to be able to load a 32 bit constant into a ooy = b Code Sxanpe Koo
i . . . Arithmetic add 0and32 | add $s1,$s2, $s3 $s1 = $s2 + $s3
register, for this we must use two instructions @el sabtract oand3a | sub Sl 82, 853 SoL= 552 553
orma
= a new "load upper immediate" instruction add immediate 8 | addissl$s2.6 $s1=82+6
- or immediate 13 ori $sl, $s2, 6 $s1 = $s2 v 6
lui $t0 ? 1010101010101010 Data Transfer | load word 35 Iw $s1, 24($s2) $s1 = Memory(§s2+24)
‘ 16 ‘ 0 ‘ 8 ‘ 1010101010101010 ‘ (1 format) store word 43 sw $s1, 24($52) Memory(§s2+24) = $s1
i i load byte 32 b 51, 25($52) $s1 = Memory(8s2+25)
= Then must get the lower order bits right, use store byte 0 s ssi 25s2) Vermory($2+25) = 51
ori $t0, $t0, 1010101010101010 load upper imm 15 lui - $s1,6 Ss1= 6% 216
Cond. Branch | br on equal 4 beq $sl, $s2, L if ($s1==$s2) go to L
§(')r‘f‘":() br on not equal 5 bne $s1, §2, L if (351 1=$52) go to L
1010101010101010 0000000000000000 set on less than Oand42 |sit $si,$s2, $s3 if ($52<8s3) $51=1 else
$51=0
0000000000000000 1010101010101010 set on less than 10 siti - Ss1, $s2, 6 if ($52<6) $s1=1 else
immediate $51=0
Uncond. jump 2 j 2500 go to 10000
[1010101010101010 [1010101010101010] ;”;‘;fmm)“ jump register oands |jr su go to $t1
39 jump and link 3 jal 2500 go to 10000; $ra=PC+4 40
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
4 HOFEESH, MIPS R3000 ISA sem
o T 5
= Instruction Categories Registers
= Computational n
« Load / Store RO-Rs1 L]
= Jump and Branch n (2) SmRER, TaRR
= Floating Point B AEYTRBERAEYRTL, T7AIARYDRT L
m AEY2:RBIEREE FrylalRTLA
Memory Management [pPC_____] - - PN oSS A
Doy n AEYSHRRRIEL AT A (BT AT —Say, R—ULY, &)
= >pecia = ARUAERBLITLATIOEE, SERBEE RDERE
n EYAH1:BYRAADRBEN, BYAHDELE
3 Instruction Formats: all 32 bits wide n FYiA#H2:BIYAALEDFTN
[oF [rs [n [rd [sa | funct | Riformat =)k.‘ﬁﬁﬁllfﬁm SFeRIL, %v?»)ldl:l’j7.&7‘5£t N
n AHAHEZ : AEABEDTN, FrrLBEORHERIE
Lop [rs [[immediateqebiy | !format n AHAHES For L OBE, BEHE
‘ OP | jump target (26bit) ‘ J format LR—hEEA R ER = & U ST
4 42

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

