LR—hEREE

1. 001, 002, 003, 004, 005 &£LV\S35DDHLTILTATSLE
SimMips_Cache TEI{ESH, ¥vviaDHY (X, S/ (X, AX%E
EHEIELEFDIRFFRATR &, FU3TIE &

ALY TARIEEREEZFAHTHIN, TALUNEEENDE.

2. FovlaDHYARXR BT HEEFEFEL)

1. 1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB

3. FAUHARX
1. 19—k, 27—k, 47—F

4. AKX
1. MLV TAR,

2. 22Waytwb7YI 7 T4 AR (BERATILTIXLEIRTHIL)
3. 4-Waytwh7VYT7T4T AR
4. 8-Waytyb7YTT7T4T AR

5. 8Waytyb7YLTT4TARDEETHAT7ITIXLEIRLT, =X

EOHIBZRA&. TOFHMESRERE.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005




i LA—k 2k

= 8A 118 (F#&5E) FTICEFA—/LTRHE

= report@arch.cs.titech.ac.jp
s BFA—ILDEARL

= Computer Architecture Report
 BEFA-ILOAR

- KB, FEES

« [F

= PDFI7A LR

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

SimMips_Cache (SimMips vO.5.5~DZH)
* Makefile
TARGET = SimMips_Cache

HEADER = define.h

SOURCE = main.cc board.cc memory.cc simloader.cc
mips.cc mipsinst.cc cp0.cc device.cc cache.cc

$+§%7—$77?«' - (B)




Sllips Cache (SimMips vO.5.5~NDZEE)

. defme h
/********‘k***‘k**‘k***‘k**********‘k***‘k**‘k***‘k**********‘k***‘k**‘k**********/
int cache_init(int); // for Cache Implementation

int cache_access(int); // for Cache Implementation
int cache_finalize(); // for Cache Implementation

ﬁfﬁ%?—#’T’]?v %— (6

SimMips_Cache (SimMips vO.5.5~DZEE)

* main.cc

int main(int argc, char *argv[])

{
printf("## %s %bs¥n", L_NAME, L_VER);

Board *board = new Board():
cache_init(1024); // 1024 entry cache

// execute if successfully initialized
if (board->siminit(argc, argv) == 0)
board->exec();

DELETE(board);
cache_finalize();
return O;

ﬁfﬁ%?—#’T’]?v E— ()




SimMips_Cache (SimMips vO.5.5~DZEE)

* mips.cc

inline void Mips::memsend()

if ((exc_occur) || ('running()))
return;

if (inst->attr & LOAD_1B) {
mcid = mc->enqueue(paddr, 1, NULL);
cache_access(paddr); /** Cache Access **/
} else if (inst->attr & LOAD_2B) {
mcid = mc->enqueue(paddr, 2, NULL);
cache_access(paddr); /** Cache Access **/
} else if (inst->attr & LOAD_4B_ALIGN) {
mcid = mc->enqueue(paddr, 4, NULL);
cache_access(paddr); /** Cache Access **/

@? A—FD#ERMEET S, SEIGANTEEELAEL.
HERT—FTOFv E— ()

\-"/\/\/‘\A’\éﬁ

cache.cc # ALy T DREFI(1)

iy, S, S G

typedef int data_ft;

typedef struct cache_line {
data_t valid;
data_t tag;
data_t data;

} cline;

static int cache_size;
static cline *buf;
static int cache_hit;
static int cache_miss;

ﬁfﬁ%?—#’T’]?v %— (6




Direct Mapped Cache Example x

» One word/block, cache size = 1K words
Byte
3130 1312 11 210 offset
[ [ [ 4
Hit Tag ‘PO T~o Data
Index 2
Index Valid  Tag Data
0
1
2
_
1021:
1022
1023
“~20 L=
y
e
@ﬁ%?—#wﬁv -

cache.cc # AL Iy T DEEHI(2)
W

int cache_init(int size)
{

cache_hit =0;

cache_miss = O;

cache_size = size;

buf = (cline *)calloc(cache_size, sizeof(cline)):

return O;

$+§%7—$77?«' E— ()




cache.cc ¥ ALy T DEEHI(3)

int cache_access(int address)

{

int index = (address »> 2) % cache_size;
data_t tag = (address > 2);

if(buf[index].valid && buf[index].tag==tag){ /** cache hit **/
cache_hit ++;

else{ /** cache miss **/
cache_miss ++;
buf[index].valid = 1;
buf[index].tag = tag;
buf[index].data = O; // dummy data
}

//  printf("address %08x hit %8d , miss %8d¥n",
// address, cache_hit, cache _miss);
return O;

ﬁﬁﬁw FT9F v F— (E)

=

SimMips_Cache @V /(LA %
\/‘f\/\/\

« BADTALYM)T SimMips_Cache.tgz #RBEL T, LA

TDHaTUk (make) TaAv/ ()L

$ tar xvfz SimMips_Cache.tgz
$ cd kadaicache

$ make

$ ./SimMips_Cache

## SimMips_Cache: Simple Computer Simulator ...

ﬁfﬁ%?—#’T’]?v E— ()




SimMips_Cache M ETAH % x

- 001,002,003, 004,005 DENENIIAVFT— 775‘*%‘?[’!'511’&\
. 005 REEOTOYSL, EFEEFAELOTIE
$ make run

Ht SimMips_Cache: Simple Computer Simulator of MIPS .

## cpu stopped

## cycle count: 14001120

## inst count: 14001120

## simulation time: 1.132
HH# mips: 12.363

$$ cache size 4(KB| hit 31490 , miss 968899

$ cache hit rate @
HERT—FTOFY E— (B)

SimMips_Cache DEITHER ¥ /LUt vT

« 001

— $% cache hit rate 95.005
« 002

— $% cache hit rate 80.282
« 003

— $$ cache hit rate 0.023
« 004

— $% cache hit rate 3.148
« 005

— $% cache hit rate 84.772

ﬁfﬁ%?—%‘»T’]?v - ©




i LA—k 2k

= 8A 118 (F#&5E) FTICEFA—/LTRHE
= report@arch.cs.titech.ac.jp
s BEFA—ILDEARIL
= Computer Architecture Report
= EFA-ILOARE
- KB, FEES
« [F
= PDFI7A LR

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

15




