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ネットワーク結合のマルチコアプロセッサ
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ネットワーク結合のマルチプロセッサ，分散メモリ
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ネットワーク結合のマルチコアプロセッサ
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Interconnection Network

(a) Bus

(c) Grid, mesh
(d) Torus

(b) Crossbar
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Interconnection Network Performance Metrics

Network cost
number of switches
number of links on a switch to connect to the network (plus one 
link to connect to the processor)
width in bits per link, length of link

Network bandwidth (NB)
– represents the best case

bandwidth of each link * number of links

Bisection bandwidth (BB)バイセクションバンド幅

– represents the worst case
divide the machine in two parts, 
each with half the nodes and 
sum the bandwidth of the links that cross the dividing line
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Bus Network

N processors,  1 switch  (    ),  1 link (the bus)
Only 1 simultaneous transfer at a time

NB (best case) = link (bus) bandwidth * 1
BB (worst case)  = link (bus) bandwidth * 1

Processor
node

Bidirectional
network switch
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Ring Network

If a link is as fast as a bus, the ring is only twice as fast 
as a bus in the worst case, but is N times faster in the 
best case

N processors, N switches, 2 links/switch, N links
N simultaneous transfers

NB (best case) = link bandwidth * N
BB (worst case) = link bandwidth * 2
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Ｃell Broadband Engine & PS3
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Cell BE Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed 1111
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Crossbar (Xbar) Network

N processors, N2 switches (unidirectional), 
2 links/switch, N2 links
N simultaneous transfers

NB = link bandwidth * N
BB = link bandwidth * N/2
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Fully Connected Network

N processors, N switches, N-1 links/switch,                   
(N*(N-1))/2 links
N simultaneous transfers

NB (best case) = link bandwidth * (N*(N-1))/2
BB (worst case) = link bandwidth * (N/2)2

1313
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Fat Tree

C DA B

Trees are good structures. 
People in CS (Computer Science) use them all the time. 
Suppose we wanted to make a tree network.

Any time A wants to send to C, it ties up the upper links, 
so that B can't send to D. 

The bisection bandwidth on a tree is horrible - 1 link, at all times

The solution is to 'thicken' the upper links. 
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Fat Tree

N processors, log(N-1)*logN switches, 
2 up + 4 down = 6 links/switch, N*logN links
N simultaneous transfers

NB = link bandwidth * N log N
BB = link bandwidth * 4
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2D and 3D Mesh/Torus Network

N simultaneous transfers
NB = link bandwidth * 4N       or    link bandwidth * 6N
BB = link bandwidth * 2 N1/2    or    link bandwidth * 2 N2/3

N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D 
torus) links/switch, 4N/2 links or 6N/2 links

Mesh Torus

割り込みとDMA 
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I/O Systemの利用方法と割り込み
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Communication of I/O Devices and Processor

How the processor directs the I/O devices
Memory-mapped I/O

Portions of the high-order memory address space 
are assigned to each I/O device
Read and writes to those memory addresses are 
interpreted
as commands to the I/O devices
Load/stores to the I/O address space can only be 
done by the OS

Special I/O instructions
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Communication of I/O Devices and Processor

How the I/O device communicates with the 
processor

Polling – the processor periodically checks the status 
of an I/O device to determine its need for service

Processor is totally in control – but does all the 
work
Can waste a lot of processor time due to speed 
differences

Interrupt-driven I/O – the I/O device issues an 
interrupts to the processor to indicate that it 
needs attention
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Interrupt-Driven Input
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Interrupt-Driven Output

Processor

TrnsmttrMemory

Display

add
sub
and
or
beq

lbu
sb
...
jr

memory

user
program

1.output 
interrupt

2.1 save state

output
interrupt
service
routine

2.2 jump to 
interrupt
service routine

2.4 return
to user code

2.3 service 
interrupt

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Interrupt-Driven I/O

An I/O interrupt is asynchronous
Is not associated with any instruction so doesn’t prevent any instruction 
from completing

You can pick your own convenient point to handle the interrupt
With I/O interrupts

Need a way to identify the device generating the interrupt
Can have different urgencies (so may need to be prioritized) 

Advantages of using interrupts
No need to continuously poll for an I/O event; user program progress is 
only suspended during the actual transfer of I/O data to/from user 
memory space

Disadvantage – special hardware is needed to
Cause an interrupt (I/O device) and detect an interrupt and save the 
necessary information to resume normal processing after servicing the 
interrupt (processor)
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Direct Memory Access (DMA)

For high-bandwidth devices (like disks) interrupt-
driven I/O would consume a lot of processor cycles
DMA – the I/O controller has the ability to transfer 
data directly to/from the memory without involving 
the processor
There may be multiple DMA devices in one system

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk



Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying 
the I/O device address, the operation to be performed, 
the memory address destination/source, the number of 
bytes to transfer

2. The I/O DMA controller manages the entire transfer 
(possibly thousand of bytes in length), arbitrating for 
the bus

3. When the DMA transfer is complete, the I/O controller 
interrupts the processor to let it know that the transfer 
is complete

SimMc 
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SimMc: Many-Core and NoC Simulator

• 8ビットの整数 x, y を用いて，(x, y) の座標によりコアを指定する．x, yは
0～255 の値をとる．ただし， x = 0 及び y = 0 は特別なユニットを表現
するために予約する． y = 0 も使わない．

• Core ID は x，y の順序の連結 により生成される16ビットで表現する．

• 現在のバージョンでは，最下段に

サーバコアを用意する． (1, 1)

(1, 2)

(1, 8)

(2, 1)

(2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

(8, 9)(3, 9)(1，9) (2, 9)
サーバコア

0 0 ID_X ID_Y

コアID

081632
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Packet および Flit の構成

• フリット(flit)は 38ビットの固定長とする

address

stride

datavalid

tailerheader

payload

1 0 1 0 0 0 address

1 0 0 1 0 0 stride

1 1 0 0 0 0 header

1 0 0 0 1 0 data

1 0 0 0 1 1 data

32bit
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Packet および Flit の構成

• パケット(packet)は１つの header flit, 1～9個の address, 
stride, data flit であり，最後のフリットは tailer のフラグを立て

ることによって構成される．

• パケットは最長で10flit である．

• フリット(flit)のサイズは 38ビットの固定長とする．

Header flit
Body flit
Body flit

Body flit
Tailer flit

最長のパケット

10flit
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Core to Core の通信タイミング
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Library: Multi-Core library MClib Ver. 1.3

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);
• void MC_finalize();
• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,

size_t size, int remote_stride, int local_stride); 
• void MC_dma_get(int get_id, int local_id, void *remote_addr, 

void *local_addr, size_t size, int remote_stride,       
int local_stride);

• int MC_printf(char *format, ...);
• void MC_puts(char* s);
• int MC_sprintf(char *buf, char *format, ...);
• int MC_sleep(int n);
• int MC_clock(unsigned int*);
• etc
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DMA 転送 : MC_dma_put
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• ローカルコアの保持するデータリモートコアのメモリに転送．

• 下の例は，コアAがMC_dma_putを呼び出し，コアBにデータ

を送る場合．

データ
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MC_dma_putの流れ – Local-Core ～ Router

33

DMAC

Router

Core A

Memory mapped I/O
1

フリット
パケット
を生成

3
data

2 4

remote_id
remote_addr
local_addr
size（byte）
remote_stride
local_stride
cmd

ヘッダ情報

Local Memory
addres

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
34

講義用の計算機の使い方

ユーザ名 advance で 131.112.16.56 にログイン

linuxなど

ssh advance@131.112.16.56
講義時に伝えたパスワードでログイン

学籍番号でディレクトリを作成して，そこで作業する．

mkdir myname
cd myname

参考ファイルをコピーして実行

tar …


