
1

計算機アーキテクチャ特論
(Advanced Computer Architectures)

マルチコアプロセッサ・プログラミング

吉瀬 謙二 計算工学専攻
kise _at_ cs.titech.ac.jp www.arch.cs.titech.ac.jp
W832 講義室 金曜日 13:20 – 14:50

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Intel
80-Core

8 x 10 tiles
2D Mesh

2

ネットワーク結合のマルチコアプロセッサ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ネットワーク結合のマルチプロセッサ，分散メモリ

Proc1 Proc2 Proc4

Caches Caches Caches

Network

Memory

Proc3

Caches

Memory Memory Memory

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ネットワーク結合のマルチコアプロセッサ

Core1 Core2 Core4

Network

Memory

Core3

Memory Memory Memory

ネットワーク

55
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Interconnection Network

(a) Bus

(c) Grid, mesh
(d) Torus

(b) Crossbar

66

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Interconnection Network Performance Metrics

Network cost
number of switches
number of links on a switch to connect to the network (plus one
link to connect to the processor)
width in bits per link, length of link

Network bandwidth (NB)
– represents the best case

bandwidth of each link * number of links

Bisection bandwidth (BB)バイセクションバンド幅

– represents the worst case
divide the machine in two parts,
each with half the nodes and
sum the bandwidth of the links that cross the dividing line

77
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Bus Network

N processors, 1 switch (), 1 link (the bus)
Only 1 simultaneous transfer at a time

NB (best case) = link (bus) bandwidth * 1
BB (worst case) = link (bus) bandwidth * 1

Processor
node

Bidirectional
network switch

88

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Ring Network

If a link is as fast as a bus, the ring is only twice as fast
as a bus in the worst case, but is N times faster in the
best case

N processors, N switches, 2 links/switch, N links
N simultaneous transfers

NB (best case) = link bandwidth * N
BB (worst case) = link bandwidth * 2

99
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Ｃell Broadband Engine & PS3

1010

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Cell BE Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed 1111
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Crossbar (Xbar) Network

N processors, N2 switches (unidirectional),
2 links/switch, N2 links
N simultaneous transfers

NB = link bandwidth * N
BB = link bandwidth * N/2

1212

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fully Connected Network

N processors, N switches, N-1 links/switch,
(N*(N-1))/2 links
N simultaneous transfers

NB (best case) = link bandwidth * (N*(N-1))/2
BB (worst case) = link bandwidth * (N/2)2

1313
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fat Tree

C DA B

Trees are good structures.
People in CS (Computer Science) use them all the time.
Suppose we wanted to make a tree network.

Any time A wants to send to C, it ties up the upper links,
so that B can't send to D.

The bisection bandwidth on a tree is horrible - 1 link, at all times

The solution is to 'thicken' the upper links.
1414

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fat Tree

N processors, log(N-1)*logN switches,
2 up + 4 down = 6 links/switch, N*logN links
N simultaneous transfers

NB = link bandwidth * N log N
BB = link bandwidth * 4

1515
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

2D and 3D Mesh/Torus Network

N simultaneous transfers
NB = link bandwidth * 4N or link bandwidth * 6N
BB = link bandwidth * 2 N1/2 or link bandwidth * 2 N2/3

N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D
torus) links/switch, 4N/2 links or 6N/2 links

Mesh Torus

割り込みとDMA

1717
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I/O Systemの利用方法と割り込み

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

18

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Communication of I/O Devices and Processor

How the processor directs the I/O devices
Memory-mapped I/O

Portions of the high-order memory address space
are assigned to each I/O device
Read and writes to those memory addresses are
interpreted
as commands to the I/O devices
Load/stores to the I/O address space can only be
done by the OS

Special I/O instructions

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Communication of I/O Devices and Processor

How the I/O device communicates with the
processor

Polling – the processor periodically checks the status
of an I/O device to determine its need for service

Processor is totally in control – but does all the
work
Can waste a lot of processor time due to speed
differences

Interrupt-driven I/O – the I/O device issues an
interrupts to the processor to indicate that it
needs attention

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Interrupt-Driven Input

memory

user
program

1. input
interrupt

2.1 save state

Processor

ReceiverMemory

add
sub
and
or
beq

lbu
sb
...
jr

2.2 jump to
interrupt
service routine

2.4 return
to user code

Keyboard

2.3 service
interrupt

input
interrupt
service
routine

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Interrupt-Driven Output

Processor

TrnsmttrMemory

Display

add
sub
and
or
beq

lbu
sb
...
jr

memory

user
program

1.output
interrupt

2.1 save state

output
interrupt
service
routine

2.2 jump to
interrupt
service routine

2.4 return
to user code

2.3 service
interrupt

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Interrupt-Driven I/O

An I/O interrupt is asynchronous
Is not associated with any instruction so doesn’t prevent any instruction
from completing

You can pick your own convenient point to handle the interrupt
With I/O interrupts

Need a way to identify the device generating the interrupt
Can have different urgencies (so may need to be prioritized)

Advantages of using interrupts
No need to continuously poll for an I/O event; user program progress is
only suspended during the actual transfer of I/O data to/from user
memory space

Disadvantage – special hardware is needed to
Cause an interrupt (I/O device) and detect an interrupt and save the
necessary information to resume normal processing after servicing the
interrupt (processor)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Direct Memory Access (DMA)

For high-bandwidth devices (like disks) interrupt-
driven I/O would consume a lot of processor cycles
DMA – the I/O controller has the ability to transfer
data directly to/from the memory without involving
the processor
There may be multiple DMA devices in one system

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying
the I/O device address, the operation to be performed,
the memory address destination/source, the number of
bytes to transfer

2. The I/O DMA controller manages the entire transfer
(possibly thousand of bytes in length), arbitrating for
the bus

3. When the DMA transfer is complete, the I/O controller
interrupts the processor to let it know that the transfer
is complete

SimMc

2626

Kise Laboratory Tokyo Tech 27

SimMc: Many-Core and NoC Simulator

• 8ビットの整数 x, y を用いて，(x, y) の座標によりコアを指定する．x, yは
0～255 の値をとる．ただし， x = 0 及び y = 0 は特別なユニットを表現
するために予約する． y = 0 も使わない．

• Core ID は x，y の順序の連結 により生成される16ビットで表現する．

• 現在のバージョンでは，最下段に

サーバコアを用意する． (1, 1)

(1, 2)

(1, 8)

(2, 1)

(2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

(8, 9)(3, 9)(1，9) (2, 9)
サーバコア

0 0 ID_X ID_Y

コアID

081632

Kise Laboratory Tokyo Tech 28

Packet および Flit の構成

• フリット(flit)は 38ビットの固定長とする

address

stride

datavalid

tailerheader

payload

1 0 1 0 0 0 address

1 0 0 1 0 0 stride

1 1 0 0 0 0 header

1 0 0 0 1 0 data

1 0 0 0 1 1 data

32bit

Kise Laboratory Tokyo Tech 29

Packet および Flit の構成

• パケット(packet)は１つの header flit, 1～9個の address,
stride, data flit であり，最後のフリットは tailer のフラグを立て

ることによって構成される．

• パケットは最長で10flit である．

• フリット(flit)のサイズは 38ビットの固定長とする．

Header flit
Body flit
Body flit

Body flit
Tailer flit

最長のパケット

10flit

Kise Laboratory Tokyo Tech 30

Core to Core の通信タイミング

clk

posedge clk

storeCore A

DMAC A - buf

Router A - buf

Router B - buf

DMAC B - buf

header

header

header

Core B

header

load

性能を重視したタイミング

addr

addr

addr

addr

data

data

data

data

Kise Laboratory Tokyo Tech

Library: Multi-Core library MClib Ver. 1.3

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);
• void MC_finalize();
• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,

size_t size, int remote_stride, int local_stride);
• void MC_dma_get(int get_id, int local_id, void *remote_addr,

void *local_addr, size_t size, int remote_stride,
int local_stride);

• int MC_printf(char *format, ...);
• void MC_puts(char* s);
• int MC_sprintf(char *buf, char *format, ...);
• int MC_sleep(int n);
• int MC_clock(unsigned int*);
• etc

31 Kise Laboratory Tokyo Tech

DMA 転送 : MC_dma_put

32

DMAC

Router

Core A

Local
Memory

DMAC

Router

Core B

Local
Memory

• ローカルコアの保持するデータリモートコアのメモリに転送．

• 下の例は，コアAがMC_dma_putを呼び出し，コアBにデータ

を送る場合．

データ

Kise Laboratory Tokyo Tech

MC_dma_putの流れ – Local-Core ～ Router

33

DMAC

Router

Core A

Memory mapped I/O
1

フリット
パケット
を生成

3
data

2 4

remote_id
remote_addr
local_addr
size（byte）
remote_stride
local_stride
cmd

ヘッダ情報

Local Memory
addres

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
34

講義用の計算機の使い方

ユーザ名 advance で 131.112.16.56 にログイン

linuxなど

ssh advance@131.112.16.56
講義時に伝えたパスワードでログイン

学籍番号でディレクトリを作成して，そこで作業する．

mkdir myname
cd myname

参考ファイルをコピーして実行

tar …

