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アウトオブオーダ実行プロセッサの構成
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Gshare (TR-DEC 1993)の実装

Program 
Counter

XOR

n

n m

グローバル分岐履歴と分岐アドレスとの排他的論理和によりパターン履歴表
へのインデックスを作成

パターン履歴表は２ビット飽和型カウンタの配列で，選択された２ビットカウンタの
値により分岐方向を予測（bimodalと同じ）

分岐結果を用いて，予測に利用したカウンタを更新

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

010101000 （シフトレジスタ）

Branch History 
Register (BHR)
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Gshareの実装

class Gshare {
data_t bhr;
data_t *buf;

public:
int size;
Gshare(int);
int predict(data_t);
void update(data_t, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(data_t pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(data_t pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<3) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}
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命令キャッシュの実装

Index

DataTagValid

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)
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命令キャッシュの実装

struct icache_line {
data_t valid;
data_t tag;
data_t data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(data_t, data_t*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(data_t pc, data_t *ir){
int index  = (pc >> 4) % size;
data_t tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1; 

}
else{  /** cache miss **/

buf[index].valid = 1;
buf[index].tag = tag;
for(int i=0; i<4; i++){

data_t ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}
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命令キャッシュのミス率 (bench, シンプルな合成ベンチ
マーク)
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Branch Target Buffer (BTB)の実装

分岐成立の場合にのみ，分岐先アドレスを登録する．

Validビットは利用しない．

Tag
Index

Branch TargetTag

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

Target Address

32

Hit
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Branch Target Buffer (BTB)の実装

struct btb_line {
data_t tag;
data_t data;

};

class BTB {
btb_line *buf;

public:
int size;
BTB(int);
void fetch(data_t, data_t*);
void regist(data_t, data_t);

};

BTB::BTB(int btb_size){
size = btb_size;
buf = (btb_line *)calloc(size, sizeof(btb_line));

}

void BTB::fetch(data_t pc, data_t *target){
int index  = (pc >> 2) % size;
data_t tag = (pc >> 2);
if(buf[index].tag==tag) *target=buf[index].data;
else *target = 0;

}

void BTB::regist(data_t pc, data_t target){
int index  = (pc >> 2) % size;
data_t tag = (pc >> 2);
buf[index].tag = tag;
buf[index].data = target;

}
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Branch Target Buffer のミス率 (bench)
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成立の分岐命令の場合のみ判定する点に注意
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命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC
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Branch Target Buffer (BTB)の改良

Tag
Index

Branch TargetTag

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

Target Address

32

Hit

キャッシュラインに１つの分岐のみを許す

Branch Location
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命令キャッシュにおけるミスアラインメント

分岐命令S5の飛び先をT1とする．

- S1 S2 S3
S4 S5 - -

- T1 T2 T3
T4 - - -

分岐

ソースのキャッシュブロック１

ソースのキャッシュブロック２

ターゲットのキャッシュブロック１

ターゲットのキャッシュブロック２

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

マイク・ジョンソン，スーパースカラプロセッサ 13
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命令の整列化およびマージ

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

S1 S2 S3 S4
S5
T1 T2 T3 T4

命令の整列化

4命令デコーダの様子

S1 S2 S3 S4
S5 T1 T2 T3
T4

命令のマージ

4命令デコーダの様子

14

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

命令キャッシュの改良，フィルタリング

Index

DataTagValid

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

Tag

Hit

0 0

PCが指し示す以前の命令をNOPに変更

成立分岐の後続命令をNOPに変更

15
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など
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アウトオブオーダ実行プロセッサの構成
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２命令のレジスタ・リネーミング

sub $5,$1,$2
add $9,$5,$4

Cycle 1

9101112

フリータグ・バッファ

head

13

0

レジスタ・マップテーブル

1
2
3
4

5->9

->10

0
1
2
3
4
5
6
7
8
9
10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

sub p9,p1,p2
add p10,p9,p4

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I1 dst == I2 src1 ?
MUX

I1

I2
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レジスタ データ依存(data dependence)

真のデータ依存 (true data dependence)
RAW, read after write

出力依存 (output dependence)
WAW, write after write

逆依存 (antidependence)
WAR, write after read

RAR ?, read after read

偽のデータ依存
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Gshare (TR-DEC 1993)

Program 
Counter

XOR

n

n m

グローバル分岐履歴と分岐アドレスとの排他的論理和によりパターン履歴表

へのインデックスを作成

パターン履歴表は２ビット飽和型カウンタの配列で，選択された２ビットカウンタの
値により分岐方向を予測（bimodalと同じ）

分岐結果を用いて，予測に利用したカウンタを更新

Pattern History Table (PHT)
…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

010101000 （シフトレジスタ）

Branch History 
Register (BHR)
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Gshare の改良

Program 
Counter

XOR

n

n m
PHT

…
2n entry

Prediction

Branch History 
Register (BHR)

PHTの競合が発生して性能が低下

PCとBHRによって特定される予測（成立，不成立）には偏りが存在する

ので，これらを別のテーブルに格納することで競合の悪影響を緩和

分岐成立に偏っているもの

分岐不成立に偏っているもの

Program 
Counter

XOR

n m

Branch History 
Register (BHR)

Gshare

Taken(1)

Not Taken(0) 21
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偏りを利用して競合の悪影響を緩和
分岐成立に偏っているものをTaken PHTに格納

分岐不成立に偏っているものをUntaken PHTに格納

Choice PHT の内容で，

どちらのテーブルを利用

するか選択

インデックスを工夫
Choice PHT 
は命令アドレス

Taken PHT, Untaken PHT 
は命令アドレスと分岐履歴

Bimode (MICRO 1997)

Untaken PHTTaken PHT

…

Prediction

Choice PHT

…

Program Counter

XOR

Branch History

…
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パーセプトロン

パーセプロロンモデル
x1からxnまでのnビットの分岐履歴を入力とする．

y を計算する．

w は符号付きの整数で表現
y の値がある閾値より高い場合に成立と予測する．

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2
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レポート（１）： 分岐予測の実装と評価

Bimode分岐予測を実装し，その予測ミス率を測定せよ．また，

Gshare分岐予測との予測精度の比較を示せ．

ハードウェア量を 2KB, 4KB, 8KB, 16KB, 32KB, 64KBとしてグラフ

を描け．

Bimode分岐予測に工夫を施し（あるいは，ことなる方式の予測

を実装し），予測ミス率を測定せよ．

ハードウェア量を 2KB, 4KB, 8KB, 16KB, 32KB, 64KBとしてグラフ

を描け．

次回の講義（１２月１７日）の開始時点にレポートを提出

コードの説明（コードは少ないほどベター），工夫した点

ハードウェア量の計算方法を明示

ミス率のグラフ（表ではないので注意）

考察と感想
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レポート（１）：分岐予測の実装と評価

トレースデータ，命令アドレスと分岐結果の系列
/***** BPKit 0.5 trace file *****/

//trace_name________: CBP1-IT1

//total_branches____: 4184792

//total_instructions: 29499987

004058fb 0

00405910 0

0040591c 0

00405925 0

0040592e 0

0040593a 0

00405944 0

0040594b 0

0040492d 1

0040494f 0

while(!gzeof(gzfp)){
gzgets(gzfp, buf, BUFSIZE);
sscanf(buf, "%x %d", &pc, &taken);

bp_predict(pc, NULL, &pred); /* prediction */
bp_regist(pc, taken, NULL);  /* update storage */

if(pred==taken) hit++; else miss++;        
}
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レポート（１）：分岐予測の実装と評価
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レポート（１）：分岐予測の実装と評価
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レポート（１）：分岐予測の実装と評価
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講義用の計算機の使い方

ユーザ名 advance で 131.112.16.56 にログイン

linuxなど

ssh archo@131.112.16.56
講義時に伝えたパスワードでログイン

学籍番号でディレクトリを作成して，そこで作業する．

mkdir myname
cd myname

参考ファイルをコピーして実行

tar …
maker run
make cat
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