
1

計算機アーキテクチャ特論
(Advanced Computer Architectures)

プロセッサフロントエンド

吉瀬 謙二 計算工学専攻
kise _at_ cs.titech.ac.jp www.arch.cs.titech.ac.jp
W832 講義室 金曜日 13:20 – 14:50

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：

命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshare (TR-DEC 1993)の実装

Program
Counter

XOR

n

n m

グローバル分岐履歴と分岐アドレスとの排他的論理和によりパターン履歴表
へのインデックスを作成

パターン履歴表は２ビット飽和型カウンタの配列で，選択された２ビットカウンタの
値により分岐方向を予測（bimodalと同じ）

分岐結果を用いて，予測に利用したカウンタを更新

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

010101000 （シフトレジスタ）

Branch History
Register (BHR)

3
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshareの実装

class Gshare {
data_t bhr;
data_t *buf;

public:
int size;
Gshare(int);
int predict(data_t);
void update(data_t, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(data_t pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(data_t pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<3) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

struct icache_line {
data_t valid;
data_t tag;
data_t data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(data_t, data_t*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(data_t pc, data_t *ir){
int index = (pc >> 4) % size;
data_t tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1;

}
else{ /** cache miss **/

buf[index].valid = 1;
buf[index].tag = tag;
for(int i=0; i<4; i++){

data_t ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュのミス率 (bench, シンプルな合成ベンチ
マーク)

5.87

4.41

1.63

0.01 0.01 0.01
0

1

2

3

4

5

6

7

4 8 16 32 64 128

The number of cache entries

In
st

ru
c
ti
o
n
 C

ac
h
e

M
is

s
R

at
io

 (
%
)

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の実装

分岐成立の場合にのみ，分岐先アドレスを登録する．

Validビットは利用しない．

Tag
Index

Branch TargetTag

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Target Address

32

Hit
8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の実装

struct btb_line {
data_t tag;
data_t data;

};

class BTB {
btb_line *buf;

public:
int size;
BTB(int);
void fetch(data_t, data_t*);
void regist(data_t, data_t);

};

BTB::BTB(int btb_size){
size = btb_size;
buf = (btb_line *)calloc(size, sizeof(btb_line));

}

void BTB::fetch(data_t pc, data_t *target){
int index = (pc >> 2) % size;
data_t tag = (pc >> 2);
if(buf[index].tag==tag) *target=buf[index].data;
else *target = 0;

}

void BTB::regist(data_t pc, data_t target){
int index = (pc >> 2) % size;
data_t tag = (pc >> 2);
buf[index].tag = tag;
buf[index].data = target;

}

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer のミス率 (bench)

6.99

2.75

0.34 0.34 0.34
0.04

0

1

2

3

4

5

6

7

8

4 8 16 32 64 128

The number of BTB entries

B
T
B

 m
is

s
ra

ti
o
 (

%)

成立の分岐命令の場合のみ判定する点に注意

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の改良

Tag
Index

Branch TargetTag

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Target Address

32

Hit

キャッシュラインに１つの分岐のみを許す

Branch Location

12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュにおけるミスアラインメント

分岐命令S5の飛び先をT1とする．

- S1 S2 S3
S4 S5 - -

- T1 T2 T3
T4 - - -

分岐

ソースのキャッシュブロック１

ソースのキャッシュブロック２

ターゲットのキャッシュブロック１

ターゲットのキャッシュブロック２

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

マイク・ジョンソン，スーパースカラプロセッサ 13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令の整列化およびマージ

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

S1 S2 S3 S4
S5
T1 T2 T3 T4

命令の整列化

4命令デコーダの様子

S1 S2 S3 S4
S5 T1 T2 T3
T4

命令のマージ

4命令デコーダの様子

14

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの改良，フィルタリング

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

0 0

PCが指し示す以前の命令をNOPに変更

成立分岐の後続命令をNOPに変更

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：

命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

２命令のレジスタ・リネーミング

sub $5,$1,$2
add $9,$5,$4

Cycle 1

9101112

フリータグ・バッファ

head

13

0

レジスタ・マップテーブル

1
2
3
4

5->9

->10

0
1
2
3
4
5
6
7
8
9
10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

sub p9,p1,p2
add p10,p9,p4

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I1 dst == I2 src1 ?
MUX

I1

I2

18

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レジスタ データ依存(data dependence)

真のデータ依存 (true data dependence)
RAW, read after write

出力依存 (output dependence)
WAW, write after write

逆依存 (antidependence)
WAR, write after read

RAR ?, read after read

偽のデータ依存

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshare (TR-DEC 1993)

Program
Counter

XOR

n

n m

グローバル分岐履歴と分岐アドレスとの排他的論理和によりパターン履歴表

へのインデックスを作成

パターン履歴表は２ビット飽和型カウンタの配列で，選択された２ビットカウンタの
値により分岐方向を予測（bimodalと同じ）

分岐結果を用いて，予測に利用したカウンタを更新

Pattern History Table (PHT)
…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

010101000 （シフトレジスタ）

Branch History
Register (BHR)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshare の改良

Program
Counter

XOR

n

n m
PHT

…
2n entry

Prediction

Branch History
Register (BHR)

PHTの競合が発生して性能が低下

PCとBHRによって特定される予測（成立，不成立）には偏りが存在する

ので，これらを別のテーブルに格納することで競合の悪影響を緩和

分岐成立に偏っているもの

分岐不成立に偏っているもの

Program
Counter

XOR

n m

Branch History
Register (BHR)

Gshare

Taken(1)

Not Taken(0) 21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

偏りを利用して競合の悪影響を緩和
分岐成立に偏っているものをTaken PHTに格納

分岐不成立に偏っているものをUntaken PHTに格納

Choice PHT の内容で，

どちらのテーブルを利用

するか選択

インデックスを工夫
Choice PHT
は命令アドレス

Taken PHT, Untaken PHT
は命令アドレスと分岐履歴

Bimode (MICRO 1997)

Untaken PHTTaken PHT

…

Prediction

Choice PHT

…

Program Counter

XOR

Branch History

…

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パーセプトロン

パーセプロロンモデル
x1からxnまでのnビットの分岐履歴を入力とする．

y を計算する．

w は符号付きの整数で表現
y の値がある閾値より高い場合に成立と予測する．

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レポート（１）： 分岐予測の実装と評価

Bimode分岐予測を実装し，その予測ミス率を測定せよ．また，

Gshare分岐予測との予測精度の比較を示せ．

ハードウェア量を 2KB, 4KB, 8KB, 16KB, 32KB, 64KBとしてグラフ

を描け．

Bimode分岐予測に工夫を施し（あるいは，ことなる方式の予測

を実装し），予測ミス率を測定せよ．

ハードウェア量を 2KB, 4KB, 8KB, 16KB, 32KB, 64KBとしてグラフ

を描け．

次回の講義（１２月１７日）の開始時点にレポートを提出

コードの説明（コードは少ないほどベター），工夫した点

ハードウェア量の計算方法を明示

ミス率のグラフ（表ではないので注意）

考察と感想

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レポート（１）：分岐予測の実装と評価

トレースデータ，命令アドレスと分岐結果の系列
/***** BPKit 0.5 trace file *****/

//trace_name________: CBP1-IT1

//total_branches____: 4184792

//total_instructions: 29499987

004058fb 0

00405910 0

0040591c 0

00405925 0

0040592e 0

0040593a 0

00405944 0

0040594b 0

0040492d 1

0040494f 0

while(!gzeof(gzfp)){
gzgets(gzfp, buf, BUFSIZE);
sscanf(buf, "%x %d", &pc, &taken);

bp_predict(pc, NULL, &pred); /* prediction */
bp_regist(pc, taken, NULL); /* update storage */

if(pred==taken) hit++; else miss++;
}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レポート（１）：分岐予測の実装と評価

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レポート（１）：分岐予測の実装と評価

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レポート（１）：分岐予測の実装と評価

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
29

講義用の計算機の使い方

ユーザ名 advance で 131.112.16.56 にログイン

linuxなど

ssh archo@131.112.16.56
講義時に伝えたパスワードでログイン

学籍番号でディレクトリを作成して，そこで作業する．

mkdir myname
cd myname

参考ファイルをコピーして実行

tar …
maker run
make cat

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：

命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

30

