HERT —XTOF R
! (Advanced Computer Architectures)

]
1. BA:RA0FAwyvY
EH D HEIFENR

kise _at_ cs.titech.ac.jp www.arch.cs.titech.ac.jp
ws3l #EHZE AR 9:00 - 10:30

& EERME-BEXNGF

= AR STEIRIELET
« FTEHBEERT 0ty LT ORIEEICREL, EARERERHORELZERTS.
IS, LORENSVRDFEREAVTHEBO RSB EETRL, HHEAERD
BEES.
= SFH: HEWT—FTI/FE—
= CPUZEM, AEY, Fri/L, Athh, BIEFIE, FOHEMATLEERT %
REEISOVT, ZOEE, BEREBICOVTHERTS.
= 6FH: HEHRT—XTIFVE=
= BEFOHE#IZTLICRYANLATNSERTOy Y FIEAR, BRARIC
DNTRA, ThsDEMEBEL/ M TF(>Tatyy, R—/8avEa—4, #
WFIEHEE, T-HTO0—FEHE, FOERNET —FTIFVISDOVTHEERT .
. AEBT—FTOF v iR (KERT)
VA, D—YRT—Lay, ERERERCEHEROT IUHAIIOVY,
IS—=YFIALICKELZEERLTLSY(/ATOEYHITDONT, 2D
B LIS OV THERETS. F-, BEEEHRISLTY(/0T

Dty R EETS.
1 2
AﬂEEeﬂ from L‘omﬂ‘lel Ggamzamm and . Hﬂ, Patterson & Hennessz. © 2005
HERT —XTOF R
! (Advanced Computer Architectures)
| avEa1—43 ?
0. BA
3 4
AdaEed from Camﬂt?l OEamzarron and | Des/gn, Patterson & Hennessy, © 2005

AVE1—R(TARIMT - avE1—%)

- ==

FARTLA
(B=%)

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

TARY, R TA4RY

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

AE!) (Dynamic Random Access Memory)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

JZ57499h—k, 2ybT—Uh—FK

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

<v/(44aJo+tyH (CPU)

v F—K—F, B

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

11

aVE1—R(TARYbY T -avE1—4)

Sl ==

12

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Example: The Pentium 4 system

Memory Controller Hub " System Bus (“Front Side Bus”):
(“Northbridge™) s 64b x 800 MHz (6.4GB/s), 533
weaseazane MHz, or 400 MHz

ORS00 BORAM

“ DDR SDRAM
Main

Memory

Graphics output:
2.0 GB/s 20

Gbit ethernet: 0.26

et b | Archencare Hub Bus: 8b x 266 MHz

PCI:
X 33 MHz

2 serial ATAs:
150 MB/s

Oual indapardent
Sorlal ATA Ports

Connect interface
2 parallel ATA:
100 MB/s

Hlsnudusa?u

Athi0
8 USBs: 60 MB/s

= s“ lrnut AAID l‘ouhr\olew
1/0 Controller Hub

(“Southbridge™)

AVELA—E3T7—XTIOF YDA

13 14
AdaEled from Cumzuler Olzanlzanan and Des:gn‘ Patterson & Hennessx, © 2005 AdEE[ed from Camﬂ‘!el Gﬂamlal/ﬂn and | Des/zn, Patterson & Hennessz‘ © 2005
A N ~ N
Oy FUTORIE, YVIT—NEFA)3 A23TYk, TIT—

30cm®MD Y IT—/\

ESFHI) T, BEHZ0cm

KRELGCDDLILHEL TV,

\
1 ing:
Silicon, the most abundant element
Hq on earth except for oxygen, is used because
(YT—NHSEYH LT it is a natural semiconductor,
BrOFvT)
Hi#8: Intel#t, Industry-Leading Transistor Performance Demonstrated on Intel's 90-nanometer Logic Process
15 16
Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005
==y - o o3 =y s
TOtvHDERE, F1D/\vr—T1i TOtyYERETHHODIS RS
1971 5: 4004 77009
g4
Jotwvy HEE FSUOREH
B4 DEETIASBEDWRERANTEEL, WREEDID DELEEE 4004 1971 2,250
Ry —=SELTIIT %, B
Hig: Richard L. Sites, Alpha AXP Architecture Reference Manual SECOND EDITION . HR: FY—EHERID (A T(F (Wikipedia)l, IntelSa—37 L s
Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

L—=T7DEAZ LB DR EHDEM

L—F7DER
FyITHRATESNS U AAO L 2EMT2ME2EMT 5,

Tatyy HEE FUOREH

4004 1971 2,250

8008 1972 2,500 MOORE'S LAW

8080 1974 5,000

8086 1978 29,000 ;

286 1982 120,000 e
386™ processor 1985 275,000 - "-7//
486™ DX processor 1989 1,180,000 -

Pentium® processor 1993 3,100,000 - !
Pentium 11 processor 1997 7,500,000 - &
Pentium 11l processor 1999 24,000,000 e

Pentium 4 processor 2000 42,000,000 P

L=FQEMRS TS OREBMEMLTE . SELRBROEMARAENS.

Hi#: Intel#t, http://www.intel.com/research/silicon/mooreslaw.htm

P TR

» MOUDRBEERMEA D A TEEET HRIYTF

On / off

- L

[—————

19 20
AdaEled from L‘mm_:uter Olzanlzallan and Destgn Patterson & Hennessz, © 2005 AdEEled from Eumgu!sl Oﬂamzal/nn and Des/zn, Patterson & Nenness* © 2005
rUORAMBET —k Moore'’s Law
» NOUDREAFBRNGA Y ST IEMEET HR(YTF
—. s o I " Moore's Law
s EODDISUTRAND, DLEEEDOT LNV —MEER o i s o e
AND# —F
a
[
a b C a b
0 0O | | ,
£
1 00 1 c !
0 1 0 =
Year of imrasuction
1 1 1
21 22
Adaeied from Cameuler Dlganlzamm and Deslgn, Patterson & Hsnnessx, © 2005 Adaetsd from Camﬂtel Ogamzanan and Des/zn, Patterson & Hennessz, © 2005
Moore’s Law %< (4807 A+ yY Intel Core 2 Duo
= Core2 Duo (2006 7/27%%)
= 65nm7O+ER
= 143mm?
= 291 Million 5224
= 65W
= Core Micro Architecture
= Intelligent power capability
= Micro-Fusion
= RISC vs CISC
= Advanced Smart Cache
Intel Developer Forum
23 24

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Sim< (407 Aty Cell Broadband Engine

» ATAVZTR FYTIAFIOEVY
= PowerPC Processor Element (PPE) 11&
= Synergistic Processor Element (SPE) 8{&

PlayStation3 DEE (&
PlaySation.com (Japan) H\5

Diagram created by IBM to promote the CBEP, ©2005
WIKIPEDIASY

10f8hSU 2R 20T 0wy, BE, BiR

1 1

|_
11 =

—

26
AdaEled from CﬂmEutEl' Olzanllallan and DESIZIL Patterson & Hennessz, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
— o . “ g
10850 R20 70w yY TILFIT (2{E~E10ME) M A=—aF~
Single-ISA H Multi-Core : The Potential for Processor Power Reduction, MICRO-36
Bitko eve || eve || eve
RISCT/AtYH DY 1A
EV4)
Eve- eve || eve || eve
Evs|
EVe eve || eve || eve
Figure 1. Relative sizes of the cores used in
the study
27 28
AdaEied from Camzu.’el Olganllallan and Deslgn, Patterson & Hennessx, © 2005 AdaE=ed from CDI"%I?I D:Ei"/laﬁon and . Des/gn, Patterson & HEI"I"ESSz, © 2005
TILFAT (2{E~HI0ME) Mo A=—aT~
= = =
ERT X TOFviER
— (Advanced Computer Architectures)
!t\:'!bo’\
Threads. I
Per Socket
1. v49070tyYDamSstyhnfl
AL L &
= e
Platform 2015 Intel® Processor and Platform Evolution for the Next Decade 29 30

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

RISC - Reduced Instruction Set Computer

MIPS R3000 Instruction Set Architecture (ISA)

33

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

R1SC bhil . = Instruction Categories Registers
" L philosophy = Computational
= fixed instruction lengths « Load/Store RO - R31
= load-store instruction sets = Jump and Branch
= limited addressing modes = Floating Point
= limited operations + coprocessor
= Sun SPARC, HP PA-RISC, IBM PowerPC, Compagq = Memory Management
Alpha, MIPS, ... = Special 1o 1]
. . L 3 Instruction Formats: all 32 bits wide
Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability, L op Jrs [[rd [sa [funct |Rformat
memory space (embedded systems) [o [rs [vt | immediate | 1 format
‘ OP | jump target ‘ J format
31 32
AdaEied from Cﬂmzule/ Olzanlzanan and Destgn Patterson & Hennessz‘ © 2005 AdeEled from Cnmgutel Ofgan/zal/nn and DeS/Em Patterson & Henness* © 2005
MIPS Register Convention,
MIPS Arithmetic Instructions ABI (Application Binary Interface)
= MIPS assembly language-arithmetic statement Name Register Usage Preserve
add $t0, $s1, $s2 Number on call?
0 a.
sub $t0, $s1) $s2 $zero constant O (hardware) n.a
$at 1 reserved for assembler n.a.
= Each arithmetic instruction performs only one $v0 - Sv1 23 |retumed values no
operation $a0 - $a3 4-7 arguments yes
= Each arithmetic inétruction fits in 32 bits and specifies S0 - 817 815 | temporaries no
exactly three operands $s0 - $s7 16-23 saved val.ues yes
destination <« sourcel (op) source2 818 - $t9 24-25 |temporaries no
$gp 28 global pointer yes
= Operand order is fixed (destination first) $sp 29 stack pointer ves
= Those operands are all contained in the datapath’s $fp 30 frame pointer yes
register file ($t0,$s1,$s2) — indicated by $ $ra 31 return addr (hardware) yes

34

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Machine Language - Add Instruction

= Instructions, like registers and words of data, are 32
bits long
= Arithmetic Instruction Format (R format):
add $t0, $s1, $s2

‘ op ‘ rs ‘ rt ‘ rd ‘ shamt ‘ funct ‘
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode
35

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load/Store Instruction Format (I format):
Iw $t0, 24($s2)

op ‘ s ‘ rt ‘ 16 bit offset
Memory
24,, + $s2 = Oxfffffff
... 0001 1000 $t0 —— 0x120040ac
+...1001 0100 $s2— 0x12004094
. 1010 1100 =
0x120040ac 0x0000000¢
0x00000008
0x00000004
0x00000000
data word address (hex) 4o

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory
Iw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file — a 5 bit address
= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value
= A 16-bit field meaning access is limited to memory locations
within a region of +213 or 8,192 words (+2%5 or 32,768 bytes) of
the address in the base register
= Note that the offset can be positive or negative

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

37

MIPS Control Flow Instructions

= MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0=$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=%$sl1

. Ex: if (i==j) h=i +j;
bne $s0, $s1, Lbll

add $s3, $s0, $sl
Lbl1l:

= Instruction Format (I format):

‘ op ‘ rs ‘ rt ‘ 16 bit offset ‘

= How is the branch destination address specified?
38

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, st

= Set on less than instruction:

slt $t0, $s0, $sl # if $s0 < $sl then
$t0 = 1 else
$t0 0

= Instruction format (R format):

‘ op ‘ s ‘ rt ‘ rd ‘ ‘ funct ‘

39

More Branch Instructions, Con't

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

blt $s1, $s2, Label

$at set to 1 if

$sl < $s2

= less than

slt $at, $s1, $s2
bne $at, $zero, Label

ble $s1, $s2, Label
bgt $s1, $s2, Label
bge $s1, $s2, Label

= less than or equal to
= greater than
= great than or equal to

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

= Its why the assembler needs a reserved register ($at) o

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

= Instruction Format (J Format):

from the low order 26 bits of the jump instruction

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

41

Aside: Branching Far Away

= What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

condition
beq $s0, $si1, L1
becomes
bne $s0, $s1, L2
j L1
L2:

42

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Instructions for Accessing Procedures

= MIPS procedure call instruction:

jal ProcedureAddress #jump and link

= Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return
= Machine format (J format):

[op] 26 bit address

= Then can do procedure return with a
jr %ra #return
= Instruction format (R format):

MIPS Immediate Instructions

= Small constants are used often in typical code
= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !
addi $sp, $sp, 4
slti $t0, $s2, 15
= Machine format (I format):

#$sp = $sp + 4
#$10 = 1 if $s2<15

16 bitimmediate | | format

= The constant is kept inside the instruction itself!

[op [s [ot |

Cop [s] [[funct = Immediate format limits values to the range +2%5-1 to -2%°
43 44
AdaEied from Cﬂmzule/ Olzanlzallan and Des:gn Patterson & Hennessz‘ © 2005 AdEEled from Eamgutel Ofgan/zal/nn and DQS/EM Patterson & Henness* © 2005
MIPS ISA So Far MIPS Register Convention,
ABI (Application Binary Interface)
Category Instr Op Code Example Meaning
Arithmetic add Oand32 | add $si, $s2, $s3 $s1 = $s2 + $s3 Name Register Usage Preserve
gsr::a't) subtract 0and 34 |sub $s1, $s2, $s3 $s1 = $52 - $53 Number on call?
add immediate 8 addi $s1, $s2, 6 $s1=$52+6 $Zer0 0 constant O (hardware) n.a.
or immediate 13 ori $sl, $s2, 6 $s1 =$s2v 6
Data Transfer | load word 35 Iw $s1, 24($s2) $s1 = Memory($s2+24) $at 1 reserved for assembler n.a.
(1 format) store word 43 sw$s1, 24($52) Memory($s2+24) = $s1 $v0 - $v1 2-3 returned values no
load byte 32 I $s1, 25($s2) $51 = Memory($s2+25) $a0 - $a3 4-7 arguments yves
store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1 N
load upper imm 15 lui $s1,6 $s1=6* 216 $t0 - $t7 8-15 temporaries no
Cond. Branch | br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L $s0 - $s7 16-23 saved values yes
;er‘";) br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L $t8 - $t9 24-25 temporaries no
set on less than 0 and 42 sit $s1, $s2, $s3 if ($s2<$s3) $§%1::10else $gp 28 global pOir‘lter yes
set on less than 10 siti $s1, $s2, 6 if (8s2<6) $s1g efse $sp 29 stack pointer yes
immediate -
Uncond. jump 2 i 2500 o to 10000 $fp 30 frame pointer yes
;ufmcfmat)(J & [jump register Oand8 |ir st gotosti $ra 31 return addr (hardware) yes
jump and link 3 jal 2500 go to 10000; $ra=PC+4 45 46
AdaE ted from Cmneuler thanllamm and Deslgn, Patterson & Hsnnessx‘ © 2005 AdaElsd from L‘amgutsl Dgamzal/un and DE'WEN‘ Patterson & Hennessx, © 2005
BHE
=
A - “ . e —
= AR /ATOEYY » OVEA—RT7—FTVFv%
s R——RNSTOtvH ORBEHSL LTI EEHT7I0—F F4hR,
= BHFryLa ikt
PAN 3 .
= DIETA = Computer Architecture,
s BMSGRERTT 1T ERHNE Fourth Edition: A
= AEYTHIO—ET—EFruia Quantitative Approach,
= HRARA, 1EHBE DB Fourth Edition
«» FYIRILFIOEYY = Publisher: Morgan trumif Astunon
s AVFVTRINT—Y, AZ—TTT—XTIF ¥ ST, 4 @l
(September 13, 2006)
o . . 9 R ISBN-10: 0123704901
= [BUEEHE] LR—h8S&U, HIRLR—MCLYFHET 5. .
= ISBN-13: 978-0123704900
47 48

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

:/EJ—QQEEZ&EQ T 53R

INE—Y D AR — (B ERE
BiZBP%t. 2006
aAVE1—427—F T

R E— E ;ﬁftﬂ+4i 1989
AEBRATLIE,

BE HA ML AEE BRE 1988
aAVEa—aN—FH 27,

=E HA, DPE,,%.% BRE, 1995
EEMT—FT

1B B &, Bﬁiﬁ 1995

= HRE

« ERLALAFIILE,

RgkFH anFt

EON

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

TFTFoUR

» BEATAF, BERA7V21—L
= Www.arch.cs.titech.ac.jp

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

50

