
Reducing Energy in Instruction Caches by Using
Multiple Line Buffers with Prediction

Kashif Ali Mokhtar Aboelaze Suprakash Datta
Department of Computer Science and Engineering

York University
Toronto ON CANADA

email: {kashif, aboelaze, datta}@cs.yorku.ca

Abstract— Energy efficiency plays a crucial role in the design
of embedded processors especially for portable devices with its
limited energy source in the form of batteries. Since memory
access (either cache or main memory) consumes a significant
portion of the energy of a processor, the design of fast low-energy
caches has become a very important aspect of modern processor
design. In this paper, we present a novel cache architecture to
reduce the dynamic energy in instruction cache. Our proposed
cache architecture consists of the L1 cache, multiple line buffers,
and a prediction mechanism to predict which line buffer, or
L1 cache to access next. We used simulation to evaluate our
proposed architecture and to compare it with the HotSpot cache,
Filter cache, Predictive line buffer cache and Way-Halting cache.
Simulation results show that our approach can reduce instruction
cache energy consumption, on average, by 75% (compared to the
base line architcture) without sacrificing performance

I. INTRODUCTION

On-chip caches can have a huge impact on the processor
speed. Caches are faster than the main memory, and consume
less power per access than the main memory. A well-designed
cache results in a fast and energy efficient processor.

As the size of the chip increases, and the number of tran-
sistors on the chip increases, the cache size also increases, for
the DEC 21164 processor, 43% of the total energy consumed
in the chip is consumed by the cache [3]. Therefore, reducing
energy consumption in caches is a priority in the design of
embedded processors. In the rest of this section, we briefly
review some of the previous attempts to reduce instruction
cache energy in embedded processors.

In [8] the authors showed how to use a unified cache to
reduce the total area of the cache by 20-30% and maintain
the same hit rate as a split cache. Albonesi in [1] proposed
the selective way cache. In the selective way cache, preferred
ways (a subset of all the ways) are accessed first; in case of a
miss, the rest of the ways are accessed. The savings in energy
(by not accessing all the ways) is accomplished at the expense
of increasing the access time (2 cycles to access the cache in
the case of misprediction). Zhang et al [13] proposed a cache
where by setting a configuration register they can reconfigure
the cache size, the cache associativity, and the cache line size.
By fine-tuning the cache parameters to the application, they
achieved a power saving of up to 40%.

Way prediction was used in [14] to reduce cache energy.
In order not to sacrifice the cache speed, they used a 2-level
prediction scheme. First, they decide if they use way prediction

or not; if not then all the ways in a set associative cache are
accessed. However, if the decision is to use way prediction, the
predicted way is accessed first, in case of a miss, the rest of the
ways are accessed. A non-uniform cache was introduced in [7].
In this design, the cache has different values for associativity.
The optimal value for the number of ways is determined for
each application and is used for this application. They also
proposed some techniques in order to minimize the access
to redundant cache ways and cache tags to minimize energy
consumption.

HotSpot cache was introduced in [11] where a small filter
cache was used to store loops that are executed more than a
specific threshold. The loops are detected by using the Branch
Target Buffer (BTB) and is promoted to the HotSpot cache
when they reach their threshold values. Their design resulted
in reducing the energy consumption of the cache. Jouppi in
[6] showed how to use a small fully associative cache and
prefetching to improve the performance of a direct-mapped
cache without paying the price of a fully associative cache.
Zhang et al introduced the way-halting cache in [12] where
they used some bits from the tag in order to choose which
way to access in a multi-way (set associative) cache.

In this paper, we introduce a new cache architecture that has
a slightly better average cache access time than many existing
architectures and consumes much less energy compared to
the existing architectures. We use MediaBench and Mibench
benchmark to compare our results with the standard cache
without any line buffers, the Filter cache, the HotSpot cache,
the Way-halting cache and the single predictive line buffer.

The organization of this paper is as follows. In Section II, we
discuss the motivation behind our architecture. In Section III
we propose and explain our architecture. Section IV gives de-
tails of our prediction and line placement algorithm. Section V
presents the simulation setup and compares our architectures
with the HotSpot cache, Filter cache and single line buffer
cache. Section VI concludes the paper.

II. MOTIVATION

The overall occurrences of branches are application depen-
dent for example, multimedia applications tends to have more
structured conditional branches (structured in the sense of rel-
atively small loops that are executed a large number of times),
compared with others applications (SPEC2000 applications).

But no matter what type of workload, conditional branches
represents a significant fraction of total instructions executed
by a program.

A loop block, a sequence of instructions whose iterations is
controlled by conditional instruction, may contain a minimum
of 2 instructions and can be up to a very large number
of instructions or more. In the MediaBench/Mibench suite,
over 75% of such control instructions jump maximum of
16 instructions, while almost 50% of the control instructions
jump no more then 6 instructions. For such applications, loop
block can be captured within 2-3 line buffers. Fig-1 and Fig-
2 show average branch target distribution for MediaBench
and SPEC2000 applications respectively. From the figures
we can observe that most of the loops in the MediaBench
application have between 5 to 15 instructions. However, by
careful analysis of the programs in the MediaBench and
SPEC2000 we found the following

• Branches, on the average, don’t jump very far.
• On the average, there is a branch instruction after every

7 instruction [5].
• Each program spends most of its time within certain

blocks [11]
• More than 75% of the loops in the MediaBench suite

include 16 or less instructions.
• Almost 95% of the loops in the MediaBench suite contain

30 or less instructions
• Almost 90% of the loops in SPEC2000 contains 30 or

less instructions.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25 30 35

P
ro

po
rt

io
ns

 o
f s

eq
ue

nc
es

Relative Jump for Control instructions (in instructions)

Fig. 1. Distribution of the number of instructions in a loop for Media-
Bench/Mibench Benchmark’s Applications

In [2] we showed how to use a single line buffer in order to
reduce energy consumption in a direct-mapped cache. While
16-instruction loops cannot be be captured using a single line
buffer, they could be captured if 4-8 line buffers are used with
a good cache organization to guarantee that the instructions in
the loops are mapped to the entire set of line buffers instead
of replacing each other in a small number of line buffers.
Increasing the line size is not the solution since it affects the
temporal locality and may reduce the hit ratio.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20 25 30 35

P
ro

po
rt

io
ns

 o
f s

eq
ue

nc
es

Relative Jump for Control instructions (in instructions)

Fig. 2. Distribution of the number of instructions in a loop for SPEC2000
Benchmark’s Applications

CPU

bb1

L1 cache

bb2 bb3 bb4

Fig. 3. Cache with Multiple Line Buffers

III. PROPOSED ARCHITECTURE

Our single predictive line buffer (proposed in [2]) doesn’t
have the ability to capture most of the whole loop blocks
i.e. cannot take advantage of temporal locality, hence requires
accessing lower level (level-1) cache more often. To fully
utilize the temporal locality in a program, we now extend our
single predictive line buffer scheme by adding multiple line
buffers between the CPU and L1 cache. We also propose a
new prediction scheme to predict which line buffer to access,
or the L1 cache if we predict that the line is not tin the line
buffers. During the fetch cycle only one of the line buffers is
accessed. In case of a miss in the line buffer, the instruction
will be fetched from L1 and the line containing the fetched
instruction is placed in one of the line buffers. Figure 3 shows
a schematic of the proposed architecture. with 4 line buffers,
labeled as bb1, bb2, bb3 and bb4, and the L1 cache. The
optimal number of line buffers depends on the application.
In our simulations, we found that having anywhere between

4 to 8 line buffers achieves the best results for most of the
applications in MediaBench and Mibench benchmark. We
present detail analysis relating to number of line buffers in
Section V-B.

Our scheme dynamically selects either one of the line
buffers or the L1 cache for fetching instructions. We assume
the existence of BTB (branch target buffer), which is common
in many modern embedded processors. The added hardware
for the selection mechanism is minimum – it involves some
extra registers (called tag-bit registers) for storing a part of the
tag for the cache lines in the line buffers, and the hardware
implementation of the prediction mechanism.

A. Tag-Bit Registers

Our goal is to spread the loop(s) between the different
line buffers and to keep the loop(s) that are being currently
executed in the line buffers. If we are successful in doing
that, the tags of the data in the line buffers are sequential,
and they differ only in the low-order bits. This observation
can be effectively used to predict the line buffer containing
the instruction to be fetched. The main idea of our proposed
architecture is to cache a few of the low-order bits of the tags
in a special register called the tag-bit register. The i low order
bits of the tags in each line in the line buffer are kept in the
tag-bit register.

Our algorithm compares the contents of the tag-bit register
with the corresponding bits of the instruction address. If one
matches, this is the predicted line buffer and we access it to get
the instruction. This requires much less energy than accessing
the L1 cache. If our prediction is incorrect, then we have to
go to the L1 cache to access the required instruction. Figure 4
shows the organization of the tag-bit register.

As we have already mentioned, 75% of the loops in the
MediaBench suite include 16 or less instructions, while 95%
of the loops in the same suite contains 30 or less instruc-
tions. Having multiple line buffers increases the probability
of including the entire loop (or multiple loops) in the line
buffers. Of course that could be achieved with a good orga-
nization of the line buffers such that the instructions in the
loop are mapped to the entire set of line buffers instead of
being mapped to few line buffers replacing each other. The
instructions in the loop are sequential, which means they differ
in their low order tag bits. If we can map them to different line
buffers, the tag-bit register can be effectively used to predict
the line buffer containing the instruction to be fetched.

Fig. 4. Tag-Bit Register

In the next section, we present the prediction mechanism
and the placement mechanism used in order to increase the

probability of placing the long loops successfully in the line
buffers.

IV. PREDICTION SCHEME

In order to predict between the line buffers and the L1 cache
we need to keep some state variables. These state variables are
fetch mode which could be either L1 cache, or line buffer. If
fetch mode points to line buffer, then curr bb is a pointer to the
predicted line buffer that holds the instruction to be fetched.
Finally, TAG bits is an array which holds the low order i bits of
every tag in the line buffers. This may be a physical register, or
could be just the i bits in the TAG stored in every line buffer.
Figure 5 shows a flow chart of the prediction algorithm.

Control
Instruction

branch
taken?

Sequential PC
address

Predicted Target
address

Address
lower-bits

in tag registers?

Miss
Predicted?

o Access L1 cache
o Set curr_bb to

(curr_bb + 1) % n
o Replace line in

curr_bb line buffer

Fetch Line from L1
and place in
curr_bb line buffer

o Set curr_bb to
 predicted line buffer.
o Fetch line from line
 buffer

YES

NO YES

NO

YES

YES

Fetch Line from
’curr_bb’ line
buffer

NO

Fig. 5. Flow Diagram for the Prediction Scheme

The main idea of the prediction algorithm is as follows.
Once the instruction is fetched, the program counter (PC) is
checked against the BTB to see if that instruction is a branch
and predicted taken or not. If the instruction is a branch and

is predicted taken, the target address is loaded from the BTB
into the PC, otherwise the next sequential address is loaded
in the PC (PC is incremented according to the instruction
length). The low order bits of the TAG part of the address is
checked against the TAG bits array. If there is a match, then
the fetch mode is set to that particular line buffer. Otherwise
it is set to L1 cache. If there is no match, and the prediction is
set to L1 cache, then the instruction will be then fetched from
the L1 cache and will be stored in line buffer (curr bb+1) mod
n, where n is the number of line buffers.

If there is a match, then the instruction is fetched from the
predicted line buffer. The fetched instruction may or may not
be the required instruction (we checked only the low order
i bits). If our prediction is correct, then the instruction is
sent to the CPU. If we mispredicted, then the instruction is
accessed from the cache, the line contains that word is sent to
the curr bb line buffer.

V. EXPERIMENTAL RESULTS

In this section, our proposed scheme, multiple predictive
line buffers will be compared against various other scheme
for both performance and energy. We’ll first show our experi-
mental results for the effect of the number of line buffers for
various applications in the MediaBench/Mibench benchmarks.
Then, we show the results of the effect of the number of bits
in the tag-bit registers on the miss ratio. Then, we evaluate
the effectiveness of multiple predictive line buffer scheme
by comparing it with Filter cache, HotSpot cache, single
predictive line buffer and Way-halting cache. We also present
our results on the off-chip memory access for our proposed
cache architecture and compare it with the other architectures.
Finally, we present a small note on the hardware cost of our
proposed architecture.

A. Experimental Setup

We use SimpleScalar toolset [9] and CACTI 3.2 [10] to
conduct our experiments. We have modified SimpleScalar to
simulate Filter Caches, HotSpot caches, Predictive Line buffer
and Way-Halting cache. Our baseline architecture uses a 16KB
direct-mapped cache or 16KB 4-way set-associative cache.
Our Line buffer is 32 bytes. We have used a 512 bytes, direct-
mapped L0 cache for Filter cache and HotSpot cache. The
BTB is 4-way set-associative with 512 sets. We have used
a 2-level branch predictor in our simulation. We evaluated
energy consumption using 0.35µm process technology. For
HotSpot cache, we used a value of 16 as candidate threshold
as was suggested in [11]. As our proposed scheme is targeted
toward embedded microprocessors, we have used multimedia
benchmarks, MediaBench and Mibench but our scheme will
yield similar results for other types of workload. Each ap-
plications was limited to 500 million instructions using the
data set included with the benchmark suites. We choose sets
of encoder/decoder from different media types such as data,
voice, speech, image, video and communication. (See Table-I).
Energy per cache access, as is obtained from CACTI is shown
in Table-II, while the energy consumption of the line buffer is
from [11].

TABLE I
BENCHMARK APPLICATIONS SUMMARY

Application Type Benchmark
crc32/fft Communication Mibench
epic Data MediaBench
adpcm/g721/gsm Voice/Speech MediaBench
jpeg Image MediaBench
lame Mp3 Mibench
mpeg2 Video MediaBench

TABLE II
ENERGY PER ACCESS FOR VARIOUS CACHE CONFIGURATIONS

Cache Energy

512 L0 cache 0.69nJ
line buffer 0.12nJ
16KB direct-map 1.63nJ
16KB 4-way set-assoc 2.49nJ

B. Optimal number of line buffers

The ideal number of Line buffer depends on each applica-
tions behavior. Our experiments shows that anywhere between
4 and 8 lines buffers are optimal for most applications. Fig-6
shows the averages energy reduction when using multiple line
buffer (2 to 8) for the MediaBench and Mibench benchmark
applications using width of 4 bits for tag-bit registers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5 6 7 8

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

Number of Line Buffers

Fig. 6. Normalized Average Energy Reduction for MediaBench/Mibench
Applications

By analyzing the average normalized energy for various
applications of benchmarks (See Figures 7 for some of the
applications we used), we observed that number of line buffer
to use depends upon the conditional branches relatives target
address. Knowing, on average, how far these instructions
jumps to (i.e. size of loop block), we can relate them to how
many line buffers is required for that particular application. For
instance, for communication application crc32, using 6 line
buffer is optimal and adding 7 or 8 line buffer does not improve
the energy consumption (See Fig. 7(a)). This is because for
such application, almost none of loop block are of greater
then 14 instruction and can be easily captured using maximum

of 6 line buffers. Similar observation can be made for other
applications in MediaBench and MiBench applications.

C. Tag-bit Registers and Misprediction

The key component for effectiveness of multiple predictive
line buffers is the tag-bit register. We experimented with
numerous width of low-order tag bits. An ideal tag bit size
is the one that maximize the probability of a successful line
buffer prediction, and minimizing the hardware overhead.

Table III and IV show the results of using between 2 and
6 bits with 4 line buffers and 4-8 bits with 8 line buffers for
direct map cache. From the average of these two tables we can
see when using 2 tag bit with 4 line buffer, the miss prediction
can be as high as 22.43%. As we stated in Section II, that
almost 90% of loops contains 30 or less instructions, using 2
bits we can only accurately distinguish between maximum of
4 instructions in any loop block. Therefore using more bits
will help us predicts more efficiently. From the tables we can
see that using 4 or 5 with 4 or 8 line buffers results in a
satisfactory performance for most of the applications in the 2
benchmark suites we used. For all our experiment that follows,
we have used 5 bits as data width for our tag-bit registers

TABLE III
MISPREDICTION RATIO (4 LINE BUFFER, 2-6 BITS FOR TAG-BIT

REGISTER) USING DIRECT-MAP L1 CACHE

Benchmark 2-tag 3-tag 4-tag 5-tag 6-tag

apdcm-decode 26.59 0.18 0.14 0.00 0.00
apdcm-encode 25.88 3.86 0.06 0.05 0.01
crc32 20.02 0.02 0.01 0.00 0.00
epic 18.24 1.05 0.01 0.00 0.00
fft 27.70 8.63 3.37 1.47 1.20
fft-inv 27.70 8.63 3.37 1.47 1.20
g721-decode 19.18 3.97 1.88 0.90 0.47
g721-encode 18.47 2.66 1.15 0.40 0.17
gsm-decode 30.88 3.27 1.46 0.04 0.02
gsm-encode 26.56 0.57 0.17 0.10 0.00
jpeg2-decode 26.11 1.91 0.54 0.04 0.01
jpeg2-encode 19.64 3.90 0.45 0.08 0.03
lame 19.22 3.07 1.20 0.15 0.06
mpeg2-decode 15.25 4.32 2.34 2.24 2.20
mpeg2-encode 22.05 4.23 1.32 0.56 0.01
unepic 15.72 2.53 0.38 0.02 0.01
Average 22.45 3.30 1.12 0.47 0.34

D. Energy

In this section we compare the energy consumption of
multiple predictive line buffer with conventional filter cache,
HotSpot Cache, way-halting cache, and single Predictive line
buffer. Fig. 8 and Fig. 9 show the normalized energy consump-
tion of the above mentioned 5 different cache architectures.
These results are normalized to a baseline cache. We used two
different baseline caches, a direct mapped cache Fig. 8 and a
4-way set associative cache Fig. 9. Note that by definition the
way-halting cache requires a set associative cache and could
not be compared with the direct mapped L1 cache.

From these two figures, we can see that using multiple line
buffers does have a huge effect on the energy consumption.

(a) crc32

(b) epic

(c) jpeg2-encode

(d) mpeg2-decode

Fig. 7. Applications Branch Target Address distribution

TABLE IV
MISPREDICTION RATIO (8 LINE BUFFER, 4-8 BITS FOR TAG-BIT

REGISTER), USING DIRECT-MAP L1 CACHE

Benchmark 4-tag 5-tag 6-tag 7-tag 8-tag

apdcm-decode 0.16 0.01 0.00 0.00 0.00
apdcm-encode 0.07 0.06 0.00 0.00 0.00
crc32 0.01 0.00 0.00 0.00 0.00
epic 0.02 0.01 0.00 0.00 0.00
fft 7.20 3.85 2.70 1.31 0.71
fft-inv 7.20 3.85 2.70 1.31 0.71
g721-decode 4.19 1.35 0.76 0.25 0.24
g721-encode 2.71 1.05 0.55 0.08 0.07
gsm-decode 2.38 0.61 0.58 0.55 0.00
gsm-encode 1.72 1.15 0.05 0.04 0.00
jpeg2-decode 3.00 0.17 0.08 0.02 0.00
jpeg2-encode 2.28 1.40 0.34 0.28 0.28
lame 2.49 0.67 0.31 0.17 0.02
mpeg2-decode 2.84 2.57 2.36 0.04 0.03
mpeg2-encode 3.76 2.03 0.04 0.00 0.00
unepic 1.23 0.08 0.05 0.01 0.00
Average 2.58 1.18 0.66 0.25 0.13

For some applications such as crc32, epic, and jpeg-encode
using 8 line buffers significantly reduce energy consumption
compared to 4 line buffers.

The reason is because for these applications branch target
distribution. Fig. 7(a), 7(b), 7(c) and 7(d) show that most of the
loops could not be included in 4 line buffers. Therefore using 8
line buffer significantly reduces energy consumption for these
application compared to the rest of the benchmark. Using 8
line buffers reduces normalized energy consumption by up to
74%, compared to the baseline cache, and 47% comapred to
HotSpot Cache.

 0

 0.2

 0.4

 0.6

 0.8

 1

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 E
ne

rg
y

Filter Cache
HotSpot Cache

Single PLB
4-PLB
8-PLB

Fig. 8. Normalized energy reduction using direct-map L1 cache

Table V shows the average normalized energy consumption
of the various schemes (the average is taken over all the
programs in MediaBench and Mibench suites). From the table,
we can observe that using 8 line buffers, on the average,
significantly lower energy consumption compared to other
schemes.

 0

 0.2

 0.4

 0.6

 0.8

 1

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 E
ne

rg
y

Filter Cache
Way-Halting Cache

Single PLB
4-PLB
8-PLB

Fig. 9. Normalized energy using 4-way set-associative L1 cache

TABLE V
VARIOUS SCHEMES AVERAGE NORMALIZED ENERGY USING

DIRECT-MAP AND 4-WAY SET-ASSOCIATIVE CACHE

Direct Set-
Scheme Mapped associative

4 PLB 0.32 0.29
8 PLB 0.26 0.22
Filter Cache 0.57 0.46
HotSpot Cache 0.53 0.41
Single PLB 0.40 0.36
Way-Halting Cache N/A 0.61

E. Delay

In this section we show that multiple predictive line buffer
scheme does not sacrifice performance for the sake of reducing
energy consumption. We’ll compare normalized delay for
multiple predictive line buffer (using 4 and 8 line buffer), with
HotSpot Cache and single predictive line buffer, filter cache,
and way-halting cache using both direct-map L1 cache and
4-way set associative cache.

The normalized delay using conventional direct-map L1
cache is shown in Fig. 10, and using 4-way set associative
cache in Fig. 11. Using 4 line buffers performs as good as
single predictive line buffer. Using 8 line buffers results in a
higher delay compared to single predictive line buffer but still
is significantly better then HotSpot Cache. As we mentioned
in Section V-C, if using 6 tag width, the delay for 8 line
buffer can be improved. Using 5 bit width for tag-bit registers,
the performance overhead is still very minimal. Table VI
shows the average normalized delay for HotSpot Cache, single
predictive line buffer, Filter cache, way-halting cache, and 4
and 8 line buffers, when using direct-mapped and 4-way set
associative as the L1 cache. The results clearly show that our
scheme, on the average, achieves near-ideal delay for various
applications (The average is taken over all the programs in
MediaBench/Mibench suites).

 0

 0.5

 1

 1.5

 2

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 D
el

ay

Filter Cache
HotSpot Cache

Single PLB
4-PLB
8-PLB

Fig. 10. Normalized Delay using direct-map L1 cache

 0

 0.5

 1

 1.5

 2

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 D
el

ay

Filter Cache
Way-Halting Cache

Single PLB
4-PLB
8-PLB

Fig. 11. Normalized Delay using 4-way set-associative cache

F. Energy ∗ Delay

The product of the energy and the delay is considered
to be a good measure of performance since it takes into
consideration both the delay and the energy consumption of
the cache. If a scheme can improve the delay, on the expense
of energy consumption, or vise versa, that will show in the
Energy ∗ Delay. Fig. 12 and Fig. 13 show Energy ∗ Delay
product for HotSpot cache, filter cache, way-halting cache,
and single and multiple line buffer cache scheme, when
using Direct-mapped and 4-way Set-associative L1 cache
respectively. Our proposed scheme outperforms all the other
schemes.

G. Off-chip memory access

Accessing off-chip memory is expensive, both in terms of
energy consumption and delay. Accessing 512KB 4-way set-
associative off-chip cache is almost 6 times more expensive
than accessing the same cache but on-chip. Direct-mapped
cache although has a fast access time, but suffers from thrash-
ing problem. Thrashing occurs when two memory lines maps
to same line in the cache. Thrashing can cause performance

TABLE VI
VARIOUS SCHEMES AVERAGE NORMALIZED DELAY USING DIRECT-MAP

AND 4-WAY SET-ASSOCIATIVE CACHE

Direct Set-
Scheme Mapped associative

4 PLB 0.993 0.997
8 PLB 0.999 0.997
Filter Cache 1.070 1.091
HotSpot Cache 1.027 N/A
Single PLB 1.004 1.007
Way-Halting Cache N/A 1.000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 E
ne

rg
y

x
D

el
ay

Filter Cache
HotSpot Cache

Single PLB
4-PLB
8-PLB

Fig. 12. Normalized Energy ∗ Delay using direct-map L1 cache

issue as most of the time is spent in moving data between
memory and caches. Thrashing can be avoided if the loop-
block can be captured in the upper level cache hence avoiding
conflicts. Our proposed scheme did not increase off-chip
access. For most of the applications in MediaBench/Mibench
suites, our proposed architecture slightly better than the other
architectures, and for some applications it did significantly
better than the other architectures.

H. Hardware Cost

A detailed hardware cost of our proposed scheme is beyond
the scope of this paper. However, we present here a very
rough estimation of the hardware required to implement our
architecture.

Our architecture does not use filter or L0 cache, however
it adds 4-8 line buffers. the Filter cache is usually more than
4-8 lines, thus on the cache level it requires less hardware
compared to the HotSpot cache. Compared to the Way-Halting
cache, it requires 4-8 more line buffers. We also need hardware
to implement the prediction mechanism, that requires adding
few multiplexers and flip-flops. We need pointers to curr bb,
and the prediction flag.

VI. CONCLUSION

In this paper, we extended our single predictive-line buffer
scheme (proposed in [2]) in order to capture long loops in the
line buffers. We presented a cache architecture that utilizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 E
ne

rg
y

x
D

el
ay

Filter Cache
Way-Halting Cache

Single PLB
4-PLB
8-PLB

Fig. 13. Normalized Energy ∗ Delay using 4-way set-associative L1 cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

ad
pc

m
_d

ad
pc

m
_e

cr
c3

2

ep
ic fft

fft
_i

nv

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

2_
d

jp
eg

2_
e

la
m

e

m
pe

g2
_d

m
pe

g2
_e

un
ep

ic

N
or

m
al

iz
ed

 M
em

or
y

A
cc

es
s

Filter Cache
HotSpot Cache

Single PLB
4-PLB
8-PLB

Fig. 14. Normalized Off-Chip Memory Access

4-8 line buffers, the BTB and a simple prediction mechanism
to reduce the energy consumption in the instruction cache.
The prediction mechanism we proposed let us access only one
single line buffer, or the L1 cache in any cache access. Our
Simulation results show that on average, our scheme reduces
instruction cache energy up to 75% compared with a baseline
cache, without sacrificing performance.

REFERENCES

[1] D. Albonesi, ”Selective cache ways: on-demand cache resource
allocation” Proc. of the 32nd ACM/IEEE International Symposium
on Microarchitecture, pp 248-259, Nov. 1999.

[2] K. Ali, M. Aboelaze and S. Datta, ”Predictive line buffer: A
fast energy efficient cache architecture” Proceedings of the IEEE
SoutheastCon Memphis, TN. March 2006.

[3] J.F. Edmondson, ”Internal organization of the Alpha 21164, a
300-MHz 64 bit quad-issue CMOS RISC microprocessor,” Digital
Technology J., Vol. 7, No. 1, pp 119-135, 1995.

[4] A. Hasegawa, I. Kawasaki, S. Yoshioka, S. Kawasaki, and P.
Biswas, ”SH3: High code density, low power”, IEEE Micro, Vol.
15, No. 6, pp 11-19, Dec. 1995.

[5] J. L. Hennessy, and D. A. Patterson, ”Computer Architecture: A
Quantitative Approach” Morgan Kaufmann Publishing, 2003.

[6] N.P. Jouppi, ”Improving direct-mapped cache performance by the
addition of a small fully associative cache and prefetch buffers” the
17th Annual International Symposium on Computer Architecture
ISCA, pp 364-373, May 1990.

[7] T. Ishihara and F. Fallah, ”A non-uniform cache architecture for
low power system design”, Proceedings of the 2005 International
Symposium on Low Power Electronics and Design, ISLPED ’05,
pp 363-368, Aug. 2005.

[8] H. Mizuno and K. Ishibashi, ”A separated bit-line unified cache:
Conciliating small on-chip cache die-area and low miss ratio”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Volume 7, No. 1, pp 139-144, March 1999.

[9] The Simplescalar simulator www.simplescalar.com May 2006
[10] Shivakumar, P.; Jouppi, N.; ”CACTI 3.0: An integrated cache

timing, power, and area model” Technical Report 2001.2 Compaq
Research Lab 2001

[11] C.-L. Yang and C.-H. Lee, ”HotSpot cache: joint temporal and
spatial locality exploitation for I-cache energy reduction”, Proc. of
the 2004 International Symposium on Low Power Electronics and
Design ISPLD’04, pp 114-119, Aug. 2004.

[12] C. Zhang, F. Vahid, J. Yang and W. Najjar, ”A way-halting
cache for low-power high-performance systems”, Proc. of the 2004
International Symposium on Low Power Electronics and Design
ISPLD’04. Aug. 2004.

[13] C. Zhang, F. Vahid and W. Najjar, ”A Highly Configurable Cache
for Low Energy Embedded Systems”, ACM Transactions on Em-
bedded Computing Systems (TECS), Vol. 4, No. 2, pp 363-387,
May 2005.

[14] Z. Zhu and X. Zhang, ”Access mode prediction for low-power
cache design”, IEEE Micro, Vol. 22, No. 2, pp 58-71, March-April
2002.

