
Program Phase Detection Based Dynamic Control Mechanisms
for Pipeline Stage Unification Adoption

Jun Yao Hajime Shimada
Shinji Tomita

Yasuhiko Nakashima

Shin-ichiro Mori

Grad. Sch. of Informatics,
Kyoto Univ.

Grad. Sch. of Information
Science, NAIST

Grad. Sch. of Engineering,
Fukui Univ.

{yaojun, shimada,
tomita}@lab3.kuis.kyoto-

u.ac.jp

nakashima@is.naist.jp

moris@fuis.fuis.fukui-u.ac.jp

Abstract

To reduce the power consumption in mobile

processors, a method called Pipeline Stage Unification
(PSU) is previously designed to work as an alternative
for Dynamic Voltage Scaling (DVS). Based on PSU,
we proposed two mechanisms which dynamically
predict a suitable unification degree according to the
knowledge of the program behaviors. Our results show
that the mechanisms can achieve an average Energy
Delay Product (EDP) decreasing of 15.1% and 19.2%
for SPECint2000 benchmarks, compared to the
processor without PSU.

1. Introduction

Recently, considering power consumption has
shown its importance in the modern processor
designing, especially for portable and mobile platforms
such as mobile phone and laptop. To reduce the total
energy, a method called dynamic voltage scaling
(DVS) is currently employed. Basically, DVS
decreases the supply voltage while the processor is
experiencing low work load. This saves energy
consumption for program execution.

However, Shimada et al. [1, 11, 12] and Koppanalil
et al. [2] have presented us a different method to
reduce the processor power consumption via
inactivating and bypassing the pipeline register and
using a shallow pipeline during the program execution,
which is called pipeline stage unification (PSU). PSU
can save power in the following ways:

1. Energy can be saved because of the clock gating
of some pipeline registers.

2. After pipeline stage unification, a pipeline will
become a shallow one with fewer stages. Usually, a

shallow pipeline will have better IPC due to decreased
branch misprediction penalties and functional unit
latencies compared to the deep pipeline, as illustrated
in [3] and [4].

Such designs make PSU still applicable when the
efficiency of DVS is restricted by the process
technology advancement, as described in paper [1].

Our research described in this paper is focusing on
how to control PSU hardware to achieve a good power
saving. Currently there is only one research related to
PSU control [13] and it mentions about execution with
predefined throughput. It did not consider the different
program behaviors during the execution. In this paper,
we propose some mechanisms to dynamically adjust
the pipeline configuration to a suitable unification
degree according to the program behavior change, so
as to achieve better Energy Delay Product (EDP). By
using the two different mechanisms described in this
paper, we can get an average decreasing of 15.1% and
19.2% in EDP, respectively, compared with the EDP
of processors under normal configuration. And
compared these two mechanisms with unification
degree 2, which usually have a good EDP efficiency,
we can get a decreasing of 1.41% and 4.82%.

The rest of the paper is organized as follows.
Section 2 describes the background techniques of this
paper. Section 3 introduces the dynamic prediction
mechanisms for a PSU enabled system. Simulation
methodology and metrics to evaluate the efficiency of
different unification degrees can be found in section 4.
In section 5 we show the experiment results, together
with some analysis. Section 6 concludes the paper.

2. Related works

This section describes the background techniques
related to our research. Section 2.1 describes Pipeline

Stage Unification briefly and Section 2.2 introduces
the working set signature method.

2.1. Pipeline stage unification

In paper [1, 11, 12], Shimada et al. proposes an
energy consumption reduction method called Pipeline
Stage Unification (PSU) to reduce the power
consumption in mobile processors as an alternative for
DVS. PSU is a pipeline reconfiguration method.
Different from DVS, PSU unifies multiple pipeline
stages by bypassing pipeline registers when the
processor runs with low clock frequency, instead of
scaling down the supply voltage.

Our work introduced in this paper is based on
Shimada’s previous architecture. Suppose the pipeline
we are about to discuss will have 20 stages as shown in
[1]. We assume 3 unification degrees in the latter part
of this paper.

1. U1: The normal mode without bypassing any
pipeline registers.

2. U2: Merge every pair of two adjacent pipeline
stages by inactivating and bypassing the pipeline
register between them. The new pipeline will have 10
stages.

3. U4: Based on U2, merge the adjacent stages one
step further. It becomes a 5-stage’s pipeline.

2.2. Working set signature

Dhodapkar[5] and Sherwood[6] have shown that
programs can be divided into phases in which program
would have similar behaviors including the cache miss,
IPC and power consumption. It is described as
program phase, which may contain a set of instruction
intervals, regardless of temporal adjacency. This
theory gives us an opportunity to study the pipeline
reconfiguration at a high level, i.e., from the view of
the program behavior.

In order to detect the phase changes during the
program execution, Dhodapkar designed a working set
signature to work as the compacted representation for a
program interval. The method to form a working set
signature is shown in Figure 1. “b” in Figure 1 is the
number of bits which are used to index a instruction in
the cache block. If an instruction cache block contains
4 instructions, b is set to 2. During the program
execution, Dhodapkar selected m bits from the
program counter and used these bits to address 1 bit in
the n-bit signature via a hash function. The signature is
cleared at the beginning of an instruction interval.
After the interval begins, a bit in signature is set if the
corresponding instruction cache block is touched.

H

m b

Program Counter Working set signature

n=bit-vector size

hash function maps
m-bits to log2n bits ...

 1
 0

 1
 1

 0
 1

 ..
.

Figure 1. Mechanism for collecting working set

signature [5].
Dhodapkar used a 1024-bit signature in his paper. The
hash function he described is based on the C library
srand and rand. He chose 100k instructions as the
instruction interval length.

After collecting working set signatures, a method to
calculate the distance between the two signatures S1
and S2 is given in [5] to classify intervals into groups.
The distance δ is calculated as follows:

()
()21

21

"1"_
"1"_

SSinbitofnum
SSinbitofnum

+
⊕

=δ

Where num_of_”1”bit_in() represents the function
that counts the number of “1” bits in the bit vector. If
the distance δ is larger than a predefined threshold
delta, the two instruction intervals are of different
program phases. Dhodapkar used 0.5 as threshold in
his paper.

3. Dynamic PSU control mechanisms

Based on the background in section 2, we can make
such assumptions that since the energy consumption
keeps nearly flat in a stable program phase, we can use
the same pipeline stage unification degree in that phase
and tune a new pipeline stage unification degree at the
phase switching point. In the following sections, we
design our algorithms as a framework of an interval-
based loop. The word “interval” here refers to a large
bundle of instructions. At each iteration, a calculation
of the energy and performance over the current interval
is made and passed to the algorithm core. It will be
used to compare with the results of other
configurations so that we can predict a suitable
unification degree for the next interval based on the
history result of comparison.

We applied 2 different control methods on the
original PSU system. First one is basic phase detection
method which needs only phase switching detection
hardware. Second one is history table based method in
which we add the additional table-structured hardware
to store more history information for unification
degree prediction.

(1)

3.1. Basic phase detection method

We got the idea from Balasubramonian et al.[7] and
Dhodapkar, et al.[5], and changed the algorithm a bit
to work with the PSU system. The algorithm is shown
in Figure 2. And Figure 3 outlines the execution of this
algorithm.

We have three states in this algorithm:
1. stable: The adjacent intervals are of same phases;
2. unstable: A phase switching in program occurs

and current interval is of different phase with last
interval;

3. tuning: The period when the adjacent intervals
become stable again and different unification degrees
are being explored.
Figure 3 is a sample of execution. Firstly we suppose
that the program starts from stable. After each program
interval, we compare the signature of current interval
with the signature of the previous interval. If the
distance is larger than the threshold, we change the
state to unstable. For simplicity, we use U1 as the
unification degree for the unstable phase. The next
intervals are unstable until the distance becomes
smaller than the threshold again. Then we change the
state to tuning, which tries different unification degrees
in the following three intervals and collect the
corresponding EDP. After tuning, if the interval is still
under the same program phase, we can choose a best
unification degree for this phase and set the state to

U1 U2 U4

tuning

Ux=best unification degree

... unstable stable...

Ux ...
...

... U1

T

Figure 3. Outline of execution under basic phase

detection method
stable. This algorithm is based on the assumption that
program will show same behavior including energy,
performance and so on in the same program phase.

Because we only compare the signatures of each
consecutive interval pair, this method is of low cost.
The corresponding control hardware will also show the
advantage of simplicity.

3.2. History table based method

In order to use the feature that a phase will recur
during the program execution, we designed the table
based method to keep the phase information in a
history table. If the program comes into a phase that
has appeared in the past, we can choose a suitable
unification degree from the cached history information
without starting a new tuning procedure.

Figure 4 is the diagram of the hardware approach of
this table method; Figure 5 shows the detailed
algorithm of history table based method.

The table that we are using in this algorithm is
constructed in the following way:

1. The signature field: Each different signature
occupies one table entry so that we can use this field to
index the table items. It has a same storage size as the
signature.

2. The state field: It denotes the state of the table
entry. We define two states here: tuned and tuning. A
state of tuning means that this entry has just been
added into the table and which one is the best
unification degree is still not figured out. After all
three unification degrees have been tried, we select a
best unification degree from the tuned EDP results
(another field in the table) and set the state as tuned. 1
bit is used for this field.

3. The EDP field occupies three fixed point storage
units for each entry. It holds the EDP information for
the interval represented by this signature. We keep the
tuning information of different unification degrees in
the three fields denoted as U1, U2 and U4, respectively.
They are updated when the entry is under the tuning
state.

4. The bestU field: It holds the best unification
degree for this signature. This field is set after the
tuning finishes. If this phase occurs again, we can
predict the suitable unification degree from this field.

Figure 2. Algorithm of basic phase detection
method

After each interval Ik:
δ =signature distance of Ik and Ik-1;

if (state == stable)
if (δ> threshold)

state = unstable;
unification_degree = U1;

else if (state == unstable)
if (δ<=threshold)

state = tuning;
unification_degree = U1;

else if (state == tuning)
if (δ>threshold)

state = unstable;
unification_degree = U1;

else if (unification_degree == U4)
 state = stable;

unification_degree=best from tuning;
else

 unification_degree
=next tuning unification degree;

sig
na

tu
re

 V
ec

to
r

New EDP
unification
 degree

(1) update table

pr
ev

_t
ab

le
_i

nd
ex

= = tuned?
similar?

best unification degree
for next interval

(2) predict

(3
) s

av
e

ne
w

pr
ev

_t
ab

le
_i

nd
ex

signature STATE E D P bestU T
U1 U2 U4

... 010 ... tuned U1

... 111 ... tuning

... 101 ... tuned U4

Figure 4. hardware approach for history table
based method

Two bits are used for this field.
5. The T field: It records the time that the entry is

touched. We use it when replacing old entries. Several
bits are used according to the table size.

At the point that we are about to predict a suitable
unification degree for next interval “Ik+1”, it does not
really start so that we do not know the signature.
Hence we have no index to look up the history table
and can hardly predict the best unification degree. To
solve this problem, we engage a specific register
named prev_table_index to store the table index of the
previous interval. After each interval, we calculate the
EDP of current interval and store it in the entry which
prev_table_index refers to ((1) in Figure 4). Therefore
the EDP field and best unification degree field of each
current entry hold the information for the next interval.
After current interval finishes, we can look for the
current signature in the history table. If there is a hit,
the corresponding entry will probably carry the best
unification degree for the next interval. And we can
predict the best unification degree based on this entry
((2) in Figure 4). The register prev_table_index will be
updated to current table index before we start the next
interval ((3) in Figure 4).

In Figure 5, “prev” denotes prev_table_index and
“v” denotes a temporary table index. Also the syntax
like “prev->state” denotes the “state” field of the entry
point by prev. unif_degree is the current unification
degree.

There are two main actions which will be
performed on the table:

 1. Find the nearest signature. We simply look up
the table, comparing the new signature with all cached

signatures, in order to find a smallest distance. If this
smallest distance is larger than the threshold, we call it
a table miss and insert the new signature for the late
tuning. Otherwise we say there is a table hit;

2. Replace the least recently used table entry when
there is no sufficient place for the coming new
signature, while we call new_table_entry() in Figure 5.

The performance of these two actions will greatly
depend on the size of the table. As indicated in paper
[5], a program will not show many different signatures
during execution if the interval is set to be 100k
instructions. We can set the table size at a small level,
for example, 16 entries. Hence the overhead
introduced by the looking up and replacing can be
negligible. We will discuss this more detailedly in
section 5.4.

In this method we have an assumption that if
interval Ik+1 once happens after interval Ik and Ik
occurs again, the next interval will probably be Ik+1. It
is a bit like a simple history branch predictor. We can
efficiently predict the best unification level for Ik+1 if
the next interval for Ik is always Ik+1, while we must
endure some misprediction penalty if the next interval
for Ik is variable. We will show the efficiency of this
method in section 5.

4. Simulation methodology

We use a detailed cycle-accurate out-of-order
execution simulator, Simplscalor Tool Set [8], to
measure energy and performance of different
unification degrees. Table 1 lists the processor

Figure 5. Algorithm of history table mode

After each interval Ik:
if (prev && prev->state==tuning)

prev->EDP[unif_degree]=EDP for Ik;
if (unif_degree==U4)

prev->bestU
=best(prev->EDP[U1, U2, U4]);

prev->state = tuned;
v = find_nearest_signature();
δ = signature distance between v->sig and Ik;
if (!v || δ>threshold) /* miss */

v=new_table_entry();
v->sig=signature of Ik;
unif_degree = U1;
v->state = tuning;

else if (v->state == tuned)
unif_degree = v->bestU;

else /* v->state == tuning */
unif_degree = next unif_degree for v;

prev = v;

Table 1: processor configuration
Processor 8-way out-of-order issue,

128-entry RUU, 64-entry LSQ,
8 int ALU, 4 int mult/div,
8 fp ALU, 4 fp mult/div
8 memory ports

Branch
prediction

8K-entry gshare, 6-bit history,
2K-entry BTB,16-entry RAS

L1 I cache 64KB/32B line/2 way
L1 Dcache 64KB/32B line/2 way

L2 unified cache 2MB/64B line/4-way
Memory 64 cycles first hit,

2 cycles burst interval
TLB 16-entry I-TLB,

32-entry D-TLB,
128 cycles miss latency

Table 2: Assumptions of latencies and penalty
unification degree U1 U2 U4

clock frequency rate 100% 50% 25%
branch misprediction penalty 20 10 5

L1 Icache hit latency 4 2 1
L1 Dcache hit latency 4 2 1
L2 cache hit latency 16 8 4

int Mult latency 3 2 1
fp ALU latency 2 1 1
fp Mult latency 4 2 1

configuration. We assume a deep pipeline similar to
the current processors. Table 2 summarizes the
latencies and penalties in pipeline configuration of U1,
U2 and U4, respectively.

We used 8 integer benchmarks (gzip2, gcc, gzip,
mcf, parser, perlbmk, vortex and vpr) from
SPECint2000, with train inputs. 1.5 billion Instructions
are simulated after skipping the first billion
instructions.

To evaluate the energy and performance together in
the tuning procedure, we can use PDP, EDP and
EDDP as the metric, which can be calculated as
W/MIPS, W/(MIPS)2 and W/(MIPS)3, respectively
[10]. Since these equations put different emphasis on
energy and performance, it will show different
efficiency according to the evaluated platforms.
Basically, PDP is suitable for portable systems and
EDP is for some high end systems such as workstation
and laptop, while EDDP is good for server families.
For simplicity, we apply one single metric during one
program execution. The experiments and analysis in
Section 5 are based on EDP because our PSU is
targeted on high-performance mobile computer. Our
mechanisms can easily change to the metric of PDP or
EDDP to fit for different platforms.

In this paper, we are considering the energy saving
in the processor. Energy saving in U2 and U4 contains

two parts (1) Energy saved by stopping clock drivers
of some pipeline registers in order to inactivate and
bypass them. (2) Execution time decreased by better
IPC due to small latencies and penalties. We get eq.2
from paper [1, 9, 10] to calculate the energy saving
under different unification degrees.

()β−×= 1
Ux

normal

normal

Ux

IPC
IPC

E
E

Where EUx is energy in unification degree Ux and

Enormal is energy in normal execution mode;
IPCnormal is IPC in normal execution while IPCUx is
IPC in Ux; β is the power saving part from inactivated
pipeline registers. Since half of the pipeline registers
are inactivated in U2, we can get a β of 15%.
Furthermore, for U4, an extra half of pipeline registers
are inactivated, we can get a new β of 22.5%, as
described in [1].

5. Results and analysis

5.1. Two non-phase based methods for com-
parison

Before we apply our algorithms on the PSU

controller, we run the benchmarks under single
unification degree method and optimal method. These
two methods are used to measure the efficiency of the
phase detection based algorithms.

(1) Single unification degree method
Use a fixed unification degree U1, U2 or U4 in the

whole program execution and collect EDP data of each
interval.

(2) Optimal method
Based on the data collected from single unification

degree method, we can find a best unification degree
for each interval. By using such profiling data we can
set the unification degree to the best one at the
beginning of each instruction interval. This method is a
theoretical optimal one and can not be achieved in real
execution because it is based on the post-simulated
trace analysis. It will have a smallest EDP result
among all the mechanisms we have mentioned. And if
the EDP result of another mechanism is close to this
optimal one, we can say that mechanism is efficient.

5.2. General analysis via comparing average
EDP

We chose the signature size to be 1024 bits and the
threshold delta to be 0.5. Each interval has 100k
instructions. A simple hash function based on division
is used to lower the signature collection cost. Figure 6

(2)

0.8

1.0

1.2

1.4

1.6

1.8

bzip2 gcc gzip mcf parser perlbmk vortex vpr Average

N
or

m
al

iz
ed

 E
D

P

U1 U2 U4 BD T able

Figure 6. Normalized EDP for SPECint2000

benchmarks.
shows the EDP results for all 8 benchmarks. In Figure
6, the horizontal axis denotes benchmarks and the
average value, and the vertical axis denotes EDP value
normalized by EDP of the optimal method for each
benchmark. The columns in one benchmark represent
the normalized EDPs of U1, U2, U4, basic phase
detection and history table based method, from left to
right. Also the average results of all benchmarks are
listed. The method of smaller EDP result is more
efficient.

As shown in Figure 6, we can see that not all of the
benchmarks will show the smallest EDP results under
a single unification degree. For benchmarks like bzip2,
mcf and vortex, U1 is the most energy efficient
unification degree, and for benchmarks like perlbmk,
degree U4 has the smallest EDP result. For other
benchmarks, including gcc, gzip, parser and vpr, U2 is
better than U1 or U4. These results confirm our
assumption that there is no fixed pipeline configuration
which can always have best energy performance
efficiency for all the programs, and reconfigurations
during the execution are necessary.

For the efficiency of our mechanisms, Figure 6
shows that the basic phase detection method can
achieve an average EDP of 108%, compared with the
optimal method. And it obtains a decreasing of 15.1%,
1.41% and 16.4% when compared with single U1, U2
and U4, respectively.

The history table based method shows better
average results, as compared with the basic phase
detection method. It can achieve an average EDP of
103% of the optimal method. Compared with single
U1, U2 and U4, it can gain a total EDP decreasing of
19.2%, 4.82% and 20.5%.

We can see from these results that both basic
detection method and table based method can have
some efficiency in reducing the processor energy
consumption by prediction the next suitable pipeline
unification degree. And table based method is a bit
more effective since it caches more history information
which can reduce the tuning cost, as we have expected.

Table 3. Prediction accuracy of each benchmark,
together with benchmark characteristics.

Pred. Acc.(%)Bench-
mark

Stable
Rate (%)

nSigs Avg.
ST_Len. BD Table

bzip2 86.80 12 28.93 85.78 94.73
gcc 89.73 55 53.84 60.77 51.95
gzip 59.18 3 9.575 66.58 84.68
mcf 32.98 6 2.382 41.30 49.80

parser 67.63 33 11.75 49.24 60.12
perl. 99.97 1 14995 99.98 99.98

vortex 51.74 6 4.720 46.16 87.41
vpr 99.97 1 14995 99.98 99.98

5.3. Prediction accuracy

Since we are designing the dynamic mechanisms to
predict a suitable unification degree for the next
interval, the prediction accuracy is very important to
the final energy saving result. To study the efficiency
of the design methods more detailedly, we list the
prediction accuracy of the unification degrees in table
3, together with some benchmark characteristics.

In table 3, the column of stable rate stands for the
percentage of the total intervals that are in stable time.
The “nSigs” column denotes the number of different
signatures when the programs are under the stable time.
We obtain this value by comparing the signatures of
two stable phases. If the distance is larger than the
predefined threshold, we increase this count by 1. It
can be roughly used to represent the complexity of the
benchmark. A higher value shows that the programs
can be classified into more different stable phase
groups and may require more tunings. It may
potentially increase the complexity for dynamical
prediction. The column of “Avg. ST_len” represents
the average interval length of the stable phase for each
benchmark. These three columns are the statistical
results we got from the basic detection method. The
accuracy of using working set signature to identify the
program phase is important for further reconfiguration
on processor. It has been valued in paper [5] by
Dhodapkar.

Another column named “Pred. Acc.” in table 3 is
the ratio of precise prediction of the unification degree
for basic detection method and table based method,
respectively. We got these two columns by calculating
the similarity of predicted unification degrees with
those theoretical precise unification degrees from
optimal method. In order to show the efficiency of
history table based method optimally, we simply
choose an infinite table size in table 3. Fixed table size
will be discussed in section 5.4.

Basically, from table 3, we can see that the
prediction accuracy of table based method is better
than the basic detection based method. This is similar
with the conclusion we have obtained in section 5.2.

Also from this table, we can see that the prediction
accuracy changes due to the program characteristics.
For some simple benchmarks like perlbmk and vpr,
most intervals are of the same stable phase. For these
two benchmarks, the prediction accuracy of both
dynamical methods can reach nearly 100%. The
prediction accuracy of the basic detection based
method drops visibly when the program becomes less
stable. This may related with the simple design of the
basic detection method. We only compare the
signatures of consecutive intervals and start a tuning at
each point the program goes toward stable. If the
stability of program is low, the basic detection method
will get hurt because we can hardly save energy in
unstable and tuning phase.

Different with basic detection method, history table
base method is less sensitive to the program stability. It
is well illustrated from benchmarks like gzip and
vortex. Although the stability ratios for these two
benchmarks are lower than 60%, the prediction
accuracy can still reach 84.68% and 87.41%,
respectively. This is because the table based method
records the historical tuned information in extra
structures. If the jump direction from one signature to
another signature is stable, the prediction will be
accurate. But on the other hand, this method is
sensitive to the number of phase groups. For example,
gcc is quite stable but the number of different
signatures during stable phase is large, which lead to
the uncertainty in the jump directions. More detailed
results of table based method for gcc will be listed in
section 5.4.

Some simulation configuration like the threshold
and the signature size will affect the efficiency of the
phase detection so as to have final impact on the
energy saving results obtained by our two dynamical
methods based on the signature. We have tried several
threshold values such as 0.5, 0.25 and 0.1, and found
that the value of 50% was the most efficient one. Also,
different signature size like 1024-bit and 256-bit have
been tested. The results of 1024-bit are slightly better
than 256-bit but the difference is not dominant. Due to
the paper length, we are not going to list the detailed
results in this paper.

5.4. Table size

The size of the history table is another important
parameter for the table based method. We can see from
table 3 that the numbers of different signatures in

0

20

40

60

80

100

120

bzip2 gcc gzip mcf parser perlbmk vortex vpr

Pr
ed

ic
at

io
n

A
cc

ur
ac

y
(%

)

INF 16 8 4 2

Figure 7. Prediction accuracy of different table

size for table based method
stable phases are relatively small for most of the
benchmarks. Also most of the benchmarks are quite
stable. Therefore it is possible to set a small fixed table
size without degrading the ratio of prediction accuracy.

In this serial of experiments, we set the table size as
a fixed number, from 16 entries to 2 entries. We use
the LRU mechanism to replace the table entry when
there is no sufficient place for new signature. The
results are shown in Figure 7. A signature size of 1024
bit and a threshold of 0.5 are used for the configuration.

In Figure 7, the columns for each benchmark
represent the results of infinite table size, 16-entry, 8-
entry, 4-entry and 2-entry, respectively. We can see
from the results that there is almost no degradation
between the infinite-entry, 16-entry and 8-entry for all
benchmarks. A sharp decreasing of prediction
accuracy occurs on 4-entry table size for gzip and
vortex. Other benchmarks like bzip2, perlbmk and vpr
show no loss of accuracy even when the size shrinks to
2-entry. And for benchmark gcc, the accuracy even
increases after we reduce the table size from infinite to
16 entries. The results of 8-entry and 4-entry are also
better than the infinite one. It seems that for gcc, the
old history information may sometimes have a bad
impact in helping the prediction.

From these results, we can assume that an 8-entry
table size will be sufficient for SPECint2000
benchmarks. With a small table size, we can look up
the table faster so as to introduce less overhead into the
PSU control system.

6. Conclusions and future work

In this paper, we have designed two dynamic
control mechanisms for PSU enabled processors in
order to achieve good EDP. These two mechanisms are
based on phase detection via working set signature. By
using these two methods, we can dynamically
reconfigure the unification degree during the program
execution due to the program behavior change. Our
simulation show that the two methods can achieve an
average EDP decreasing of 15.1% and 19.2%,
compared to the original system without PSU enabling.

Such results are about 8.34% and 3.02% larger than
the optimal mode. Both methods can reduce energy
consumption in processor via dynamically predicting a
unification degree for the coming interval. Either of
the dynamical methods shows some advantages. The
basic detection method is simple and introduces less
hardware complexity, while the history table based
method shows better efficiency in predicting.

Currently the energy consumption model in this
paper is still very rough. We are planning to study the
hardware approach so as to build a more accurate
model, including the detailed overhead introduced by
the dynamical prediction mechanisms. Also, different
program phase detection methods other than the
working set signature will be tried on the PSU system.

Acknowledgement

This research is partially supported by Grant-in-Aid
for Fundamental Scientific Research (S) #16100001
from Ministry of Education, Culture, Sports, Science
and Technology Japan.

7. References

[1] H. Shimada, H. Ando and T. Shimada, “Pipeline Stage
Unification: A Low-Energy Consumption Technique for
Future Mobile Processors”, International Symposium On
Low Power Electronics And Design 2003, Aug. 2003, Seoul,
Korea, pp. 326-329.
[2] J. Koppanalil, P. Ramrakhyani, S. Desai, A.
Vaidyanathan and E. Rotenberg, “A Case for Dynamic
Pipeline Scaling”, International Conference on Compilers,
Architecture and Synthesis for Embedded Systems 2002, Oct.
2002, Grenoble, France, pp. 1-8.
[3] M.S. Hrishikesh, N.P. Jouppi, K.I. Farkas, D. Burger,
S.W. Keckler and P. Shivakumar. “The Optimal Logic Depth
Per Pipeline Stage is 6 to 8 FO4 Inverter Delays”, 29th

Annual International Symposium on Computer Architecture,
May 2002, Alaska, U.S., pp. 14-24.
[4] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V.
Zyuban, P.N. Strenski and P.G. Emma, "Optimizing
Pipelines for Power and Performance”, 35th Anuual
International Symposium on Microarchitecture, Nov. 2002,
Istanbul, Turkey, pp. 333-344.
[5] A.S. Dhodapkar and J.E. Smith, “Managing Multi-
Configuration Hardware via Dynamic Working Set
Analysis”, 29th Annual International Symposium on
Computer Architecture, May 2002, Alaska U.S., pp. 233-244.
[6] T. Sherwood, E. Perelman, G. Hamerly, S. Sair and B.
Calder, “Discovering and Exploiting Program Phases”, IEEE
Micro, Vol. 23, No. 6, Nov.-Dec. 2003, pp. 84-93.
[7] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu
and S. Dwarkadas, “Memory Hierarchy Reconfiguration for
Energy and Performance in General Purpose Architectures”,
33rd annual International Symposium on Microarchitecture,
Dec. 2000, California, U.S., pp. 245-257.
[8] D. Burger and T.M. Austin. “The SimpleScalar Tool Set,
version 2.0. Technical Report”, CS-TR-97-1342, Univ. of
Wisconsin-Madisoon Computer Sciences Dept., 1997.
[9] M.K. Gowan, L.L. Biro and D.B. Jackson, “Power
considerations in the Design of the Alpha 21264
Microprocessor”, 35th Conference on Design Automation
Conference, June, 1998, San Francisco, U.S., pp. 726-731.
[10] R. Gonzalez and M. Horowitz, “Energy Dissipation in
General Purpose Microprocessors”, IEEE JSSC, Vol. 31, No.
9, Sep. 1996, pp. 1277-1284.
[11] H. Shimada, H. Ando and T. Shimada, “Pipeline with
Variable Depth for Low Power Consumption (in Japanese)”,
IPSJ Technical Report, 2001-ARC-145, 2001, pp. 57-62.
[12] H. Shimada, H. Ando and T. Shimada, “Pipeline Stage
Unification for Low-Power Consumption,” Cool Chips V,
Apr. 2002, Tyoko, Japan, pp. 194-200.
[13] H. Shimada, H. Ando, T. Shimada, “A Hybrid Power
Reduction Mechanism Using Pipeline Stage Unification and
Dynamic Voltage Scaling (in Japanese)”, Symposium on
Advanced Computing Systems and Infrastructures 2004, May
2004, Sappro Japan, pp. 11-18.

