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Abstract 

 
To reduce the power consumption in mobile 

processors, a method called Pipeline Stage Unification 
(PSU) is previously designed to work as an alternative 
for Dynamic Voltage Scaling (DVS). Based on PSU, 
we proposed two mechanisms which dynamically 
predict a suitable unification degree according to the 
knowledge of the program behaviors. Our results show 
that the mechanisms can achieve an average Energy 
Delay Product (EDP) decreasing of 15.1% and 19.2% 
for SPECint2000 benchmarks, compared to the 
processor without PSU. 
 
 
1. Introduction 
 

Recently, considering power consumption has 
shown its importance in the modern processor 
designing, especially for portable and mobile platforms 
such as mobile phone and laptop. To reduce the total 
energy, a method called dynamic voltage scaling 
(DVS) is currently employed. Basically, DVS 
decreases the supply voltage while the processor is 
experiencing low work load. This saves energy 
consumption for program execution.  

However, Shimada et al. [1, 11, 12] and Koppanalil 
et al. [2] have presented us a different method to 
reduce the processor power consumption via 
inactivating and bypassing the pipeline register and 
using a shallow pipeline during the program execution, 
which is called pipeline stage unification (PSU). PSU 
can save power in the following ways:  

1. Energy can be saved because of the clock gating 
of some pipeline registers.  

2. After pipeline stage unification, a pipeline will 
become a shallow one with fewer stages. Usually, a 

shallow pipeline will have better IPC due to decreased 
branch misprediction penalties and functional unit 
latencies compared to the deep pipeline, as illustrated 
in [3] and [4].  

Such designs make PSU still applicable when the 
efficiency of DVS is restricted by the process 
technology advancement, as described in paper [1].  

Our research described in this paper is focusing on 
how to control PSU hardware to achieve a good power 
saving. Currently there is only one research related to 
PSU control [13] and it mentions about execution with 
predefined throughput. It did not consider the different 
program behaviors during the execution. In this paper, 
we propose some mechanisms to dynamically adjust 
the pipeline configuration to a suitable unification 
degree according to the program behavior change, so 
as to achieve better Energy Delay Product (EDP). By 
using the two different mechanisms described in this 
paper, we can get an average decreasing of 15.1% and 
19.2% in EDP, respectively, compared with the EDP 
of processors under normal configuration. And 
compared these two mechanisms with unification 
degree 2, which usually have a good EDP efficiency, 
we can get a decreasing of 1.41% and 4.82%.  

The rest of the paper is organized as follows. 
Section 2 describes the background techniques of this 
paper. Section 3 introduces the dynamic prediction 
mechanisms for a PSU enabled system. Simulation 
methodology and metrics to evaluate the efficiency of 
different unification degrees can be found in section 4. 
In section 5 we show the experiment results, together 
with some analysis. Section 6 concludes the paper.  

 
2. Related works 
 

This section describes the background techniques 
related to our research. Section 2.1 describes Pipeline 



Stage Unification briefly and Section 2.2 introduces 
the working set signature method. 

 
2.1. Pipeline stage unification 
 

In paper [1, 11, 12], Shimada et al. proposes an 
energy consumption reduction method called Pipeline 
Stage Unification (PSU) to reduce the power 
consumption in mobile processors as an alternative for 
DVS. PSU is a pipeline reconfiguration method. 
Different from DVS, PSU unifies multiple pipeline 
stages by bypassing pipeline registers when the 
processor runs with low clock frequency, instead of 
scaling down the supply voltage. 

Our work introduced in this paper is based on 
Shimada’s previous architecture. Suppose the pipeline 
we are about to discuss will have 20 stages as shown in 
[1]. We assume 3 unification degrees in the latter part 
of this paper.  

1. U1: The normal mode without bypassing any 
pipeline registers. 

2. U2: Merge every pair of two adjacent pipeline 
stages by inactivating and bypassing the pipeline 
register between them. The new pipeline will have 10 
stages. 

3. U4: Based on U2, merge the adjacent stages one 
step further. It becomes a 5-stage’s pipeline.  

 
2.2. Working set signature 
 

Dhodapkar[5] and Sherwood[6] have shown that 
programs can be divided into phases in which program 
would have similar behaviors including the cache miss, 
IPC and power consumption. It is described as 
program phase, which may contain a set of instruction 
intervals, regardless of temporal adjacency. This 
theory gives us an opportunity to study the pipeline 
reconfiguration at a high level, i.e., from the view of 
the program behavior.  

In order to detect the phase changes during the 
program execution, Dhodapkar designed a working set 
signature to work as the compacted representation for a 
program interval. The method to form a working set 
signature is shown in Figure 1. “b” in Figure 1 is the 
number of bits which are used to index a instruction in 
the cache block. If an instruction cache block contains 
4 instructions, b is set to 2. During the program 
execution, Dhodapkar selected m bits from the 
program counter and used these bits to address 1 bit in 
the n-bit signature via a hash function. The signature is 
cleared at the beginning of an instruction interval. 
After the interval begins, a bit in signature is set if the 
corresponding instruction cache block is touched.  
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Figure 1. Mechanism for collecting working set 

signature [5].  
Dhodapkar used a 1024-bit signature in his paper. The 
hash function he described is based on the C library 
srand and rand. He chose 100k instructions as the 
instruction interval length. 

After collecting working set signatures, a method to 
calculate the distance between the two signatures S1 
and S2 is given in [5] to classify intervals into groups. 
The distance δ is calculated as follows:  
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Where num_of_”1”bit_in() represents the function 
that counts the number of “1” bits in the bit vector. If 
the distance δ is larger than a predefined threshold 
delta, the two instruction intervals are of different 
program phases. Dhodapkar used 0.5 as threshold in 
his paper.  

 
3. Dynamic PSU control mechanisms 
 

Based on the background in section 2, we can make 
such assumptions that since the energy consumption 
keeps nearly flat in a stable program phase, we can use 
the same pipeline stage unification degree in that phase 
and tune a new pipeline stage unification degree at the 
phase switching point. In the following sections, we 
design our algorithms as a framework of an interval-
based loop. The word “interval” here refers to a large 
bundle of instructions. At each iteration, a calculation 
of the energy and performance over the current interval 
is made and passed to the algorithm core. It will be 
used to compare with the results of other 
configurations so that we can predict a suitable 
unification degree for the next interval based on the 
history result of comparison.  

We applied 2 different control methods on the 
original PSU system. First one is basic phase detection 
method which needs only phase switching detection 
hardware. Second one is history table based method in 
which we add the additional table-structured hardware 
to store more history information for unification 
degree prediction.  

(1)



 

 
 

3.1. Basic phase detection method 
 

We got the idea from Balasubramonian et al.[7] and 
Dhodapkar, et al.[5], and changed the algorithm a bit 
to work with the PSU system. The algorithm is shown 
in Figure 2. And Figure 3 outlines the execution of this 
algorithm.  

We have three states in this algorithm:  
1. stable: The adjacent intervals are of same phases; 
2. unstable: A phase switching in program occurs 

and current interval is of different phase with last 
interval; 

3. tuning: The period when the adjacent intervals 
become stable again and different unification degrees 
are being explored.  
Figure 3 is a sample of execution. Firstly we suppose 
that the program starts from stable. After each program 
interval, we compare the signature of current interval 
with the signature of the previous interval. If the 
distance is larger than the threshold, we change the 
state to unstable. For simplicity, we use U1 as the 
unification degree for the unstable phase. The next 
intervals are unstable until the distance becomes 
smaller than the threshold again. Then we change the 
state to tuning, which tries different unification degrees 
in the following three intervals and collect the 
corresponding EDP. After tuning, if the interval is still 
under the same program phase, we can choose a best 
unification degree for this phase and set the state to  

U1 U2 U4

tuning

Ux=best unification degree

... unstable stable...

Ux     ...
...

...    U1

T

 
Figure 3. Outline of execution under basic phase 

detection method 
stable. This algorithm is based on the assumption that 
program will show same behavior including energy, 
performance and so on in the same program phase.  

Because we only compare the signatures of each 
consecutive interval pair, this method is of low cost. 
The corresponding control hardware will also show the 
advantage of simplicity. 

 
3.2. History table based method 
 

In order to use the feature that a phase will recur 
during the program execution, we designed the table 
based method to keep the phase information in a 
history table. If the program comes into a phase that 
has appeared in the past, we can choose a suitable 
unification degree from the cached history information 
without starting a new tuning procedure.  

Figure 4 is the diagram of the hardware approach of 
this table method; Figure 5 shows the detailed 
algorithm of history table based method.  

The table that we are using in this algorithm is 
constructed in the following way: 

1. The signature field: Each different signature 
occupies one table entry so that we can use this field to 
index the table items. It has a same storage size as the 
signature.  

2. The state field: It denotes the state of the table 
entry. We define two states here: tuned and tuning. A 
state of tuning means that this entry has just been 
added into the table and which one is the best 
unification degree is still not figured out. After all 
three unification degrees have been tried, we select a 
best unification degree from the tuned EDP results 
(another field in the table) and set the state as tuned. 1 
bit is used for this field.  

3. The EDP field occupies three fixed point storage 
units for each entry. It holds the EDP information for 
the interval represented by this signature. We keep the 
tuning information of different unification degrees in 
the three fields denoted as U1, U2 and U4, respectively. 
They are updated when the entry is under the tuning 
state. 

4. The bestU field: It holds the best unification 
degree for this signature. This field is set after the 
tuning finishes. If this phase occurs again, we can 
predict the suitable unification degree from this field. 

Figure 2. Algorithm of basic phase detection 
method 

After each interval Ik: 
δ =signature distance of Ik and Ik-1; 

if (state == stable) 
if (δ> threshold) 

state = unstable; 
unification_degree = U1; 

else if (state == unstable) 
if (δ<=threshold) 

state = tuning; 
unification_degree = U1; 

else if (state == tuning) 
if (δ>threshold) 

state = unstable; 
unification_degree = U1; 

else if (unification_degree == U4) 
       state = stable; 

unification_degree=best from tuning; 
else 

       unification_degree 
=next tuning unification degree; 
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Figure 4. hardware approach for history table 
based method 

Two bits are used for this field. 
5. The T field: It records the time that the entry is 

touched. We use it when replacing old entries. Several 
bits are used according to the table size. 

At the point that we are about to predict a suitable 
unification degree for next interval “Ik+1”, it does not 
really start so that we do not know the signature. 
Hence we have no index to look up the history table 
and can hardly predict the best unification degree. To 
solve this problem, we engage a specific register 
named prev_table_index to store the table index of the 
previous interval. After each interval, we calculate the 
EDP of current interval and store it in the entry which 
prev_table_index refers to ((1) in Figure 4). Therefore 
the EDP field and best unification degree field of each 
current entry hold the information for the next interval. 
After current interval finishes, we can look for the 
current signature in the history table. If there is a hit, 
the corresponding entry will probably carry the best 
unification degree for the next interval. And we can 
predict the best unification degree based on this entry 
((2) in Figure 4). The register prev_table_index will be 
updated to current table index before we start the next 
interval ((3) in Figure 4).  

In Figure 5, “prev” denotes prev_table_index and 
“v” denotes a temporary table index. Also the syntax 
like “prev->state” denotes the “state” field of the entry 
point by prev. unif_degree is the current unification 
degree.  

There are two main actions which will be 
performed on the table: 

 1. Find the nearest signature. We simply look up 
the table, comparing the new signature with all cached  

 
 

signatures, in order to find a smallest distance. If this 
smallest distance is larger than the threshold, we call it 
a table miss and insert the new signature for the late 
tuning. Otherwise we say there is a table hit;  

2. Replace the least recently used table entry when 
there is no sufficient place for the coming new 
signature, while we call new_table_entry() in Figure 5. 

The performance of these two actions will greatly 
depend on the size of the table. As indicated in paper 
[5], a program will not show many different signatures 
during execution if the interval is set to be 100k 
instructions. We can set the table size at a small level, 
for example, 16 entries. Hence the overhead 
introduced by the looking up and replacing can be 
negligible. We will discuss this more detailedly in 
section 5.4. 

In this method we have an assumption that if 
interval Ik+1 once happens after interval Ik and Ik 
occurs again, the next interval will probably be Ik+1. It 
is a bit like a simple history branch predictor. We can 
efficiently predict the best unification level for Ik+1 if 
the next interval for Ik is always Ik+1, while we must 
endure some misprediction penalty if the next interval 
for Ik is variable. We will show the efficiency of this 
method in section 5.  

 
4. Simulation methodology 
 

We use a detailed cycle-accurate out-of-order 
execution simulator, Simplscalor Tool Set [8], to 
measure energy and performance of different 
unification degrees. Table 1 lists the processor  

Figure 5. Algorithm of history table mode 

After each interval Ik: 
if (prev && prev->state==tuning) 

prev->EDP[unif_degree]=EDP for Ik; 
if (unif_degree==U4) 

prev->bestU 
=best(prev->EDP[U1, U2, U4]); 

prev->state = tuned; 
v = find_nearest_signature(); 
δ = signature distance between v->sig and Ik;
if (!v || δ>threshold) /* miss */ 

v=new_table_entry(); 
v->sig=signature of Ik; 
unif_degree = U1; 
v->state = tuning; 

else if (v->state == tuned) 
unif_degree = v->bestU; 

else /* v->state == tuning */ 
unif_degree = next unif_degree for v; 

prev = v; 



Table 1: processor configuration 
Processor 8-way out-of-order issue, 

128-entry RUU, 64-entry LSQ, 
8 int ALU, 4 int mult/div, 
8 fp ALU, 4 fp mult/div 
8 memory ports 

Branch 
prediction 

8K-entry gshare, 6-bit history,  
2K-entry BTB,16-entry RAS 

L1 I cache 64KB/32B line/2 way 
L1 Dcache 64KB/32B line/2 way 

L2 unified cache 2MB/64B line/4-way 
Memory 64 cycles first hit, 

2 cycles burst interval 
TLB 16-entry I-TLB, 

32-entry D-TLB, 
128 cycles miss latency 

Table 2: Assumptions of latencies and penalty 
unification degree U1 U2 U4

clock frequency rate 100% 50% 25%
branch misprediction penalty 20 10 5 

L1 Icache hit latency 4 2 1 
L1 Dcache hit latency 4 2 1 
L2 cache hit latency 16 8 4 

int Mult latency 3 2 1 
fp ALU latency 2 1 1 
fp Mult latency 4 2 1 

configuration. We assume a deep pipeline similar to 
the current processors. Table 2 summarizes the 
latencies and penalties in pipeline configuration of U1, 
U2 and U4, respectively.  

We used 8 integer benchmarks (gzip2, gcc, gzip, 
mcf, parser, perlbmk, vortex and vpr) from 
SPECint2000, with train inputs. 1.5 billion Instructions 
are simulated after skipping the first billion 
instructions.  

To evaluate the energy and performance together in 
the tuning procedure, we can use PDP, EDP and 
EDDP as the metric, which can be calculated as 
W/MIPS, W/(MIPS)2 and W/(MIPS)3, respectively 
[10]. Since these equations put different emphasis on 
energy and performance, it will show different 
efficiency according to the evaluated platforms. 
Basically, PDP is suitable for portable systems and 
EDP is for some high end systems such as workstation 
and laptop, while EDDP is good for server families. 
For simplicity, we apply one single metric during one 
program execution. The experiments and analysis in 
Section 5 are based on EDP because our PSU is 
targeted on high-performance mobile computer. Our 
mechanisms can easily change to the metric of PDP or 
EDDP to fit for different platforms. 

In this paper, we are considering the energy saving 
in the processor. Energy saving in U2 and U4 contains 

two parts (1) Energy saved by stopping clock drivers 
of some pipeline registers in order to inactivate and 
bypass them. (2) Execution time decreased by better 
IPC due to small latencies and penalties. We get eq.2 
from paper [1, 9, 10] to calculate the energy saving 
under different unification degrees.  

( )β−×= 1
Ux

normal

normal

Ux

IPC
IPC

E
E

        
Where EUx is energy in unification degree Ux and 

Enormal is energy in normal execution mode; 
IPCnormal is IPC in normal execution while IPCUx is 
IPC in Ux; β is the power saving part from inactivated 
pipeline registers. Since half of the pipeline registers 
are inactivated in U2, we can get a β of 15%. 
Furthermore, for U4, an extra half of pipeline registers 
are inactivated, we can get a new β of 22.5%, as 
described in [1]. 

 
5. Results and analysis 
 
5.1. Two non-phase based methods for com-
parison 

 
Before we apply our algorithms on the PSU 

controller, we run the benchmarks under single 
unification degree method and optimal method. These 
two methods are used to measure the efficiency of the 
phase detection based algorithms. 

(1) Single unification degree method 
Use a fixed unification degree U1, U2 or U4 in the 

whole program execution and collect EDP data of each 
interval. 

(2) Optimal method 
Based on the data collected from single unification 

degree method, we can find a best unification degree 
for each interval. By using such profiling data we can 
set the unification degree to the best one at the 
beginning of each instruction interval. This method is a 
theoretical optimal one and can not be achieved in real 
execution because it is based on the post-simulated 
trace analysis. It will have a smallest EDP result 
among all the mechanisms we have mentioned. And if 
the EDP result of another mechanism is close to this 
optimal one, we can say that mechanism is efficient. 

 
5.2. General analysis via comparing average 
EDP 
 

We chose the signature size to be 1024 bits and the 
threshold delta to be 0.5. Each interval has 100k 
instructions. A simple hash function based on division 
is used to lower the signature collection cost. Figure 6 
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Figure 6. Normalized EDP for SPECint2000 

benchmarks. 
shows the EDP results for all 8 benchmarks. In Figure  
6, the horizontal axis denotes benchmarks and the 
average value, and the vertical axis denotes EDP value 
normalized by EDP of the optimal method for each 
benchmark. The columns in one benchmark represent 
the normalized EDPs of U1, U2, U4, basic phase 
detection and history table based method, from left to 
right. Also the average results of all benchmarks are 
listed. The method of smaller EDP result is more 
efficient.  

As shown in Figure 6, we can see that not all of the 
benchmarks will show the smallest EDP results under 
a single unification degree. For benchmarks like bzip2, 
mcf and vortex, U1 is the most energy efficient 
unification degree, and for benchmarks like perlbmk, 
degree U4 has the smallest EDP result. For other 
benchmarks, including gcc, gzip, parser and vpr, U2 is 
better than U1 or U4. These results confirm our 
assumption that there is no fixed pipeline configuration 
which can always have best energy performance 
efficiency for all the programs, and reconfigurations 
during the execution are necessary.  

For the efficiency of our mechanisms, Figure 6 
shows that the basic phase detection method can 
achieve an average EDP of 108%, compared with the 
optimal method. And it obtains a decreasing of 15.1%, 
1.41% and 16.4% when compared with single U1, U2 
and U4, respectively.  

The history table based method shows better 
average results, as compared with the basic phase 
detection method. It can achieve an average EDP of 
103% of the optimal method. Compared with single 
U1, U2 and U4, it can gain a total EDP decreasing of 
19.2%, 4.82% and 20.5%.  

We can see from these results that both basic 
detection method and table based method can have 
some efficiency in reducing the processor energy 
consumption by prediction the next suitable pipeline 
unification degree. And table based method is a bit 
more effective since it caches more history information 
which can reduce the tuning cost, as we have expected.  

 

Table 3. Prediction accuracy of each benchmark, 
together with benchmark characteristics. 

Pred. Acc.(%)Bench-
mark

Stable
Rate (%)

nSigs Avg. 
ST_Len. BD Table

bzip2 86.80 12 28.93 85.78 94.73
gcc 89.73 55 53.84 60.77 51.95
gzip 59.18 3 9.575 66.58 84.68
mcf 32.98 6 2.382 41.30 49.80

parser 67.63 33 11.75 49.24 60.12
perl. 99.97 1 14995 99.98 99.98

vortex 51.74 6 4.720 46.16 87.41
vpr 99.97 1 14995 99.98 99.98

5.3. Prediction accuracy 
 

Since we are designing the dynamic mechanisms to 
predict a suitable unification degree for the next 
interval, the prediction accuracy is very important to 
the final energy saving result. To study the efficiency 
of the design methods more detailedly, we list the 
prediction accuracy of the unification degrees in table 
3, together with some benchmark characteristics.  

In table 3, the column of stable rate stands for the 
percentage of the total intervals that are in stable time. 
The “nSigs” column denotes the number of different 
signatures when the programs are under the stable time. 
We obtain this value by comparing the signatures of 
two stable phases. If the distance is larger than the 
predefined threshold, we increase this count by 1. It 
can be roughly used to represent the complexity of the 
benchmark. A higher value shows that the programs 
can be classified into more different stable phase 
groups and may require more tunings. It may 
potentially increase the complexity for dynamical 
prediction. The column of “Avg. ST_len” represents 
the average interval length of the stable phase for each 
benchmark. These three columns are the statistical 
results we got from the basic detection method. The 
accuracy of using working set signature to identify the 
program phase is important for further reconfiguration 
on processor. It has been valued in paper [5] by 
Dhodapkar.  

Another column named “Pred. Acc.” in table 3 is 
the ratio of precise prediction of the unification degree 
for basic detection method and table based method, 
respectively. We got these two columns by calculating 
the similarity of predicted unification degrees with 
those theoretical precise unification degrees from 
optimal method. In order to show the efficiency of 
history table based method optimally, we simply 
choose an infinite table size in table 3. Fixed table size 
will be discussed in section 5.4.  



Basically, from table 3, we can see that the 
prediction accuracy of table based method is better 
than the basic detection based method. This is similar 
with the conclusion we have obtained in section 5.2.  

Also from this table, we can see that the prediction 
accuracy changes due to the program characteristics. 
For some simple benchmarks like perlbmk and vpr, 
most intervals are of the same stable phase. For these 
two benchmarks, the prediction accuracy of both 
dynamical methods can reach nearly 100%. The 
prediction accuracy of the basic detection based 
method drops visibly when the program becomes less 
stable. This may related with the simple design of the 
basic detection method. We only compare the 
signatures of consecutive intervals and start a tuning at 
each point the program goes toward stable. If the 
stability of program is low, the basic detection method 
will get hurt because we can hardly save energy in 
unstable and tuning phase.  

Different with basic detection method, history table 
base method is less sensitive to the program stability. It 
is well illustrated from benchmarks like gzip and 
vortex. Although the stability ratios for these two 
benchmarks are lower than 60%, the prediction 
accuracy can still reach 84.68% and 87.41%, 
respectively. This is because the table based method 
records the historical tuned information in extra 
structures. If the jump direction from one signature to 
another signature is stable, the prediction will be 
accurate. But on the other hand, this method is 
sensitive to the number of phase groups. For example, 
gcc is quite stable but the number of different 
signatures during stable phase is large, which lead to 
the uncertainty in the jump directions. More detailed  
results of table based method for gcc will be listed in 
section 5.4. 

Some simulation configuration like the threshold 
and the signature size will affect the efficiency of the 
phase detection so as to have final impact on the 
energy saving results obtained by our two dynamical 
methods based on the signature. We have tried several 
threshold values such as 0.5, 0.25 and 0.1, and found 
that the value of 50% was the most efficient one. Also, 
different signature size like 1024-bit and 256-bit have 
been tested. The results of 1024-bit are slightly better 
than 256-bit but the difference is not dominant. Due to 
the paper length, we are not going to list the detailed 
results in this paper.  

 
5.4. Table size 
 

The size of the history table is another important 
parameter for the table based method. We can see from 
table 3 that the numbers of different signatures in  
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Figure 7. Prediction accuracy of different table 

size for table based method 
stable phases are relatively small for most of the 
benchmarks. Also most of the benchmarks are quite 
stable. Therefore it is possible to set a small fixed table 
size without degrading the ratio of prediction accuracy. 

In this serial of experiments, we set the table size as 
a fixed number, from 16 entries to 2 entries. We use 
the LRU mechanism to replace the table entry when 
there is no sufficient place for new signature. The 
results are shown in Figure 7. A signature size of 1024 
bit and a threshold of 0.5 are used for the configuration. 

In Figure 7, the columns for each benchmark 
represent the results of infinite table size, 16-entry, 8-
entry, 4-entry and 2-entry, respectively. We can see 
from the results that there is almost no degradation 
between the infinite-entry, 16-entry and 8-entry for all 
benchmarks. A sharp decreasing of prediction 
accuracy occurs on 4-entry table size for gzip and 
vortex. Other benchmarks like bzip2, perlbmk and vpr 
show no loss of accuracy even when the size shrinks to 
2-entry. And for benchmark gcc, the accuracy even 
increases after we reduce the table size from infinite to 
16 entries. The results of 8-entry and 4-entry are also 
better than the infinite one. It seems that for gcc, the 
old history information may sometimes have a bad 
impact in helping the prediction.  

From these results, we can assume that an 8-entry 
table size will be sufficient for SPECint2000 
benchmarks. With a small table size, we can look up 
the table faster so as to introduce less overhead into the 
PSU control system.  

 
6. Conclusions and future work 
 

In this paper, we have designed two dynamic 
control mechanisms for PSU enabled processors in 
order to achieve good EDP. These two mechanisms are 
based on phase detection via working set signature. By 
using these two methods, we can dynamically 
reconfigure the unification degree during the program 
execution due to the program behavior change. Our 
simulation show that the two methods can achieve an 
average EDP decreasing of 15.1% and 19.2%, 
compared to the original system without PSU enabling. 



Such results are about 8.34% and 3.02% larger than 
the optimal mode. Both methods can reduce energy 
consumption in processor via dynamically predicting a 
unification degree for the coming interval. Either of 
the dynamical methods shows some advantages. The 
basic detection method is simple and introduces less 
hardware complexity, while the history table based 
method shows better efficiency in predicting.  

Currently the energy consumption model in this 
paper is still very rough. We are planning to study the 
hardware approach so as to build a more accurate 
model, including the detailed overhead introduced by 
the dynamical prediction mechanisms. Also, different 
program phase detection methods other than the 
working set signature will be tried on the PSU system.  
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