
Technical Report UEC-IS-2005-1, Version 2005-04-01
Graduate School of Information Systems, The University of Electro-Communications

A Method to Reduce the Acknowledgement Overhead of S-DSM Systems

Kenji Kise†, Takahiro Katagiri†, Hiroki Honda†, and Toshitsugu Yuba†
† Graduate School of Information Systems
The University of Electro-Communications

Abstract

We discuss the inter-process communication in software
distributed shared memory (S-DSM) systems. Some S-DSM
systems, such as TreadMarks and JIAJIA, adopt the user
datagram protocol (UDP) which does not provide the re-
liable communication between the computation nodes. To
detect and recover from a communication error, therefore,
an acknowledgment (ACK) is used for every message trans-
mission in the middleware layer.

In this paper, firstly, we show that an acknowledgement
is not necessarily required per one message transmission in
the middleware layer. Secondly, the method to reduce the
acknowledgement overhead for a page request is proposed.

We implemented the proposed method in our S-DSM sys-
tem Mocha. The performance of the method was measured
with several benchmark programs. We show that Matrix
Multiply (MM) of high page transfer frequency achieves a
drastic speedup as much as 92% for a 16-node PC cluster,
compared with the conventional communication method of
not omitting the acknowledgment.

1 Introduction

As an environment for parallel computation, cluster sys-
tems using general-purpose personal computers (PC clus-
ters) are becoming popular. Because a PC cluster has no
shared memory, the message passing model is used to de-
velop applications in many cases. On the other hand, the
shared memory is an attractive programming model for par-
allel computers. Software distributed shared memory (S-
DSM) has been proposed to realize virtual shared memory
on a PC cluster as the middleware layer software. Since the
proposal of S-DSM, several systems[1, 2, 3, 4] have been
implemented.

Some S-DSM systems, such as TreadMarks and JIAJIA,
adopt the user datagram protocol (UDP) which does not
provide the reliable communication between the computa-
tion nodes. To detect and recover from a communication
error, therefore, an acknowledgment (ACK) is used for ev-
ery message transmission in the middleware layer.

Figure 1. (a) General S-DSM communica-
tion. (b) Communication without acknowl-
edgement. (c) Msg-2 does not reach the des-
tination. (d) The order of Msg-2 are not guar-
anteed.

This paper discusses a technique to improve the S-DSM
performance on a PC cluster. Since the S-DSM system us-
ing the UDP does not always need an acknowledgment for
every message transmission, we propose a method of reduc-
ing the acknowledgment overhead. By implementing the
proposed method on a S-DSM Mocha, which is now under
development, we verify its effectiveness.

The rest of this paper is organized as follows. Section 2
describes the idea of the acknowledgement omission. Sec-
tion 3 is the proposal and section 4 describes the imple-
mentation issues. Section 5 reports our quantitative evalua-
tion results. Section 6 is a discussion and section 7 contains
some concluding remarks.

2 Omission of Acknowledgment Messages

Figure 1(a) shows how three messages, Msg-1, Msg-2,
and Msg-3, are sent from node 1 to node 2. This is an ex-
ample of general S-DSM communication. When the mes-
sages are received, node 2 on the receiving side immediately
returns acknowledgment (ACK) messages ACK-1, ACK-2,
and ACK-3 respectively.

Figure 1(b) shows a communication without acknowl-
edgment. If all transmitted messages are received without

1

Figure 2. Communication in the client-server
model [5].

error, the acknowledgment costs can be reduced as shown in
(b). Omitting all acknowledgment messages means cutting
the general send-receive message count by one-half. This is
expected to enhance the communication performance, espe-
cially in applications with frequent messages. In the UDP
communication, however, an error occurs by a certain fre-
quency. The example of errors are shown in Figure (c)
and (d), Msg-2 does not reach the destination node in (c),
and the order of Msg-2 and Msg-3 cannot be guaranteed in
(d). Despite these communication errors, S-DSM systems
should be constructed to operate correctly.

As shown in Figure 1(b), this paper is aimed at im-
proving the S-DSM performance by omitting the acknowl-
edgment messages. Note that the idea of acknowledg-
ment omission is not novel. For example, reference [6]
discusses a technique of omitting acknowledgments in the
client-server model. Figure 2 is the communication used in
this discussion. An acknowledgment for the request can be
omitted by using a reply as its acknowledgment. Also an
acknowledgment for the reply shown as the broken line in
Figure 2(b) can be omitted depending on the properties of
the reply.

In this study, the concept of acknowledgment omission
in the client-server model is applied to the field of S-DSM
for the first time. We discuss the implementation issues and
verify the performance improvement.

3 Proposal of a Method to Omit Acknowledg-
ment

3.1 Mocha: Yet Another S-DSM System

Mocha is a S-DSM system being constructed for the fol-
lowing two purposes: (1) It offers a S-DSM system easy
to use as a parallel processing environment. (2) It achieves
good performance especially for a PC cluster of many com-
putation nodes.

Mocha is strongly affected by JIAJIA and a Mocha appli-
cation is written by using an API similar to that of JIAJIA.

1 #define OP_NULL 100 /* null: */
2 #define OP_EXIT 101 /* server: exit */
3 #define OP_GETP 110 /* server: get page */
4 #define OP_GETPGRANT 111 /* server: getp grant */
5 #define OP_DIFF 112 /* server: diff */
6 #define OP_DIFFGRANT 113 /* server: diff grant */
7 #define OP_BARR 114 /* server: barrier */
8 #define OP_BARRGRANT 115 /* server: barr grant */
9 #define OP_ACQ 116 /* server: aquire */

10 #define OP_ACQGRANT 117 /* server: aquiregrant */
11 #define OP_WAIT 118 /* server: wait */
12 #define OP_WAITGRANT 119 /* server: wait grant */
13 #define OP_INV 120 /* server: invalidate */
14 #define OP_WTNT 121 /* server: w-notice */
15 #define OP_REL 122 /* server: release */
16 #define OP_BCAST 123 /* server: broadcast */

Figure 3. The list of message types used by
Mocha Version 0.2.

Figure 4. (a) The behavior of a page request.
(b) Page request without acknowledgement.

Most JIAJIA applications run on Mocha without modifica-
tion.

Mocha Version 0.2 used for evaluation in this paper man-
ages shared memory in units of 8-KB pages. Mocha is a
home based S-DSM where each page is assigned to a node
(referred to a home node) according to the user specifica-
tion. Home migration is not implemented in the current
version of Mocha. Mocha Version 0.2 adopts the scope
consistency[6].

Figure 3 is the list of message types used by Mocha
Version 0.2. If a page fault occurs in referencing the non-
cached shared memory, the page request (getpage) acquires
the page from a node that has the necessary page. The
rest of this section proposes the method of omitting the
acknowledgment of message GETP and GETPGRANT for
the getpage.

3.2 Omission of Acknowledgment for Page Re-
quest

Figure 4(a) shows the behavior of a page request. Sup-
pose that node 1 requires a page and node 2 has the page.
Node 1 calls the getpage function with the referenced mem-
ory address as a argument. The getpage function creates a

2

1 void getpage(address_t addr){
2 getpwait=1;
3 generate_message(OP_GETP, addr);
4 send_message();
5 while(getpwait); /** busy wait **/
6 }

Figure 5. The pseudo-code of the original get-
page for which the acknowledgment is not
omitted.

1 void getpage(address_t addr){
2 getpwait=1;
3 for(i=0; i<GETPAGE_MAX_RETRY; i++){
4 generate_message(OP_GETP, addr);
5 send_message();
6 while(not_timeout() && getpwait); /*busy wait*/
7 if(getpwait==0) break;
8 }
9 }

Figure 6. The pseudo-code of the function
getpage to be implemented in the proposed
method. The while loop in Line 6 finishes
when the global variable getpwait has been
reset or a timeout has occurred.

GETP message corresponding to the page request and trans-
mits it to node 2. On receiving this message, node 2 returns
an acknowledgment (ACK) message as a reply. To meet the
page request, node 2 then calls the getpserver function. This
function packs the necessary page information in a GETP-
GRANT message and sends it to node 1. On receiving
the GETPGRANT message, node 1 calls the corresponding
getpgrantserver function. This function stores the received
page information in an appropriate memory area and resets
the global variable to terminate the getpage function. The
getpage function waits in a busy wait state for the page to
arrive. When GETPGRANT arrives, the getpage function
exits from the busy wait state and continues the application
processing.

The getpage function sends a GETP message and waits
in a busy wait state. In this kind of page request processing
flow, we propose the method of omitting acknowledgment.

The exit of the getpage function from the busy wait state
guarantees that no communication errors occurred in the
two messages of GETP and GETPGRANT. If the function
did not receive the GETPGRANT message within the time-
out limit in the busy wait state, a communication error might
have occurred. In this case, the GETP message is sent again
and the system waits for the GETPGRANT message. The
system should be designed to have no problems, even if the
same message of GETP or GETPGRANT arrives several
times. Using the GETPGRANT as an acknowledgement of
GETP, acknowledgment of GETP or GETPGRANT can be
omitted as shown in Figure 4(b).

Figure 5 shows the pseudo-code of the original getpage

1 #define MSG_MASK 0x80 /* 10000000 */
2 void send_one_message(){
3
4 if(sendqh->op==OP_GETP ||
5 sendqh->op==OP_GETPGRANT)
6 sendqh->op = sendqh->op | MSG_MASK;
7
8 for(i=0; i<MAX_RETRY; i++){
9 ret = sendto(message);

10 if(sendqh->op & MSG_MASK) return;
11
12 while(not_timeout())
13 if(FD_ISSET(fds[serverproc], &fds)!=0){
14 recvfrom(message);
15 }
16 }
17 }

Figure 7. The pseudo-code of the message
transmission function send one message.

for which the acknowledgment is not omitted. Line 2 sets
the global variable getpwait, Line 3 generates a page re-
quest message, and Line 4 transmits the generated message.
When a message corresponding to the request arrives, the
received page is stored appropriately and the global vari-
able getpwait is reset. This finishes the while loop in Line 5
and terminates the page request function getpage.

Figure 6 is the pseudo-code of the function getpage to
be implemented in the proposed method. The while-loop in
Line 6 finishes when the global variable getpwait has been
reset or a timeout event has occurred. If the variable getp-
wait equals to zero in Line 7, the getpage is terminated be-
cause the requested page is assumed to have been received.
Otherwise, the for-loop from Line 3 transmits the page re-
quest message again.

4 Implementation

This section discusses the implementation of the ac-
knowledgment omission method discussed in the previous
section.

To identify a message type, the S-DSM system Mocha
uses a char-type variable of 8 bits. As summarized in Fig-
ure 3, however, not all of the 8 bits are used because the
message types are not more than 20. Therefore, the low-
order 7 bits are used to indicate an message type and the
highest-order bit is used as a flag to indicate whether the
message requires acknowledgment. This bit is called the
reliable msg flag. The system sends an acknowledgment
only when reliable msg flag is set.

Figure 7 shows the pseudo-code of the message trans-
mission function send one message. If the message
is GETP or GETPGRANT (Line 4 and 5), the reli-
able msg flag is set. in Line 6. The sendto in Line 9 trans-
mits the message. If the reliable msg flag is set, the return
in Line 10 can terminate the transmission function immedi-
ately and start the next processing because there is no need
to wait for the acknowledgment. Otherwise, it is necessary

3

to wait for the acknowledgment message. The while loop
from Line 12 to Line 15 waits for the acknowledgment and
then terminates the send one message function.

The message receiving section checks the reli-
able msg flag of the received message. Like the con-
ventional system, the system transmits an acknowledgment
message only when this flag is set.

We use the code shown in Figure 6 as getpage function
to transmit a page request message (GETP). As a result of
the parameter adjustment, the timeout interval is set to 50
ms. Therefore, if a page request message is sent again by a
communication error, the overhead of 50ms is imposed on
a system.

5 Evaluation of the Proposed Method

This section evaluates the performance of the proposed
method by using the S-DSM system called Mocha, whose
implementation was discussed in Section 4. A Mocha sys-
tem that does not use the proposed method is called the
Mocha base here.

5.1 Evaluation Environment

For the evaluation, we use a 16-node PC cluster where
16 personal computers are connected with a gigabit ethernet
switch. Each node is an SMP (symmetric multi-processor)
type computer with two processors of Intel Pentium 4 Xeon
(2.8 GHz) and 1 GB memory. The system software of the
cluster is SCore 5.6.1 constructed on RedHat Linux 7.3.

Although each node is an SMP computer, the data shown
in this paper was obtained with the configuration running
one process per each node. The execution time of each
benchmark program is calculated by the arithmetic mean
of three measurements.

5.2 Benchmark Programs

As the benchmark programs, we use N-queens[7], LU
(parallel dense blocked LU factorization, no pivoting), Wa-
ter (N-body molecular simulation), SOR (Red-Black Suc-
cessive Over-Relaxation) and MM (Matrix Multiply). The
binary of the benchmark programs is generated using GCC
version 2.96 compiler with the optimization option O2.

As a parameter of N-queens, the problem size N=17 and
the task allocation size of 8 is used. The elapsed time of the
sequential version is 55 second.

As a parameter of LU, the matrix size of 1024×1024,
and the block size of 8 is used. The element of the matrix is
double precision. The elapsed time of the sequential version
is 267 second.

As a parameter of Water, the number of particles is 1000.
The elapsed time of the sequential version is 7.7 second.

As a parameter of SOR, the matrix size of M=4096 and
N=4096, iterations=400 is used. The elapsed time of the
sequential version is 98.1 second.

Figure 8. The performance comparison of the
S-DSM systems. Benchmark is N-queens.
The speedup is normalized by the elapsed
time of JIAJIA single node.

As a parameter of MM, the matrix size of 2048×2048 is
used. The element of the matrix is double precision. The
elapsed time of the sequential version is 39.7 second.

5.3 Performance Improvement

Figures 8 to 12 summarize the results with the number
of nodes on the x-axis and the speedup on the y-axis. The
speedup is normalized by the elapsed time of JIAJIA sin-
gle node. There are results for JIAJIA Version 2.2, Tread-
Marks Version 1.0.3.3-BETA (in Figures 11 and 12 only),
and Mocha using the proposed method of omitting the ac-
knowledgment (Mocha) and not omitting the acknowledg-
ment (Mocha base).

The N-queens benchmark result is shown in Figure 8.
The speedup on the 16-node configuration is 10.3 for JIA-
JIA and 11.1 for Mocha. The mocha is 13% faster than the
JIAJIA on the 16-node configuration.

The LU benchmark result is shown in Figure 9. Since
the traffic in LU is small compared with the calculation, an
ideal speedup is achieved by increasing the number of nodes
in every S-DSM system.

The Water benchmark result is shown in Figure 10. The
speedup on the 16-node configuration is 6.0 for JIAJIA and
8.9 for Mocha. The Mocha is 49% faster than the JIAJIA
on the 16-node configuration. The Mocha base is slower
than JIAJIA. The Mocha is 54% faster than the Mocha base
on the 16-node configuration. Mocha using the proposed
method is advantageous especially where there are many
nodes,

The SOR benchmark result is shown in Figure 11. The
speedup on the 16-node configuration is 10.3 for JIAJIA
and 12.3 for Mocha. The Mocha is 19% faster than the
JIAJIA on the 16-node configuration.

4

Figure 9. The performance comparison of
the S-DSM systems. Benchmark is LU. The
speedup is normalized by the elapsed time of
JIAJIA single node.

Figure 10. The performance comparison of
the S-DSM systems. Benchmark is Water.
The speedup is normalized by the elapsed
time of JIAJIA single node.

Figure 11. The performance comparison of
the S-DSM systems. Benchmark is SOR. The
speedup is normalized by the elapsed time of
JIAJIA single node.

Figure 12. The performance comparison of
the S-DSM systems. Benchmark is MM. The
speedup is normalized by the elapsed time of
JIAJIA single node.

5

Table 1. The number of communication errors
per second of a PC cluster.
benchmark 2 node 4 node 8 node 16 node
N-queens 0.0 0.0 0.0 0.0

LU 0.0 0.0 0.0 0.0
Water 0.0 0.0 0.0 0.0
SOR 0.0 111 692 1,360
MM 0.0 0.0 0.0 0.0

The MM benchmark result is shown in Figure 12. In MM
execution, the message GETP and GETPGRANT account
for most of the elapsed time of all communications. There-
fore, the proposed method of reducing the overhead for the
page request produces remarkable effects. The conventional
system, JIAJIA 2.2, and the Mocha base do not show perfor-
mance improvement where the configuration of more than
8 nodes. TreadMarks makes the slower performance im-
provement. Even on the 16-node configuration, however,
Mocha using the proposed method keeps the highest per-
formance improvement and achieves a speedup as large as
9.7. Compared with the 16-node Mocha base, the 16-node
Mocha achieves a speedup as large as 92%.

From the evaluation results in this section, the follow-
ing conclusion can be obtained. Mocha using the proposed
method achieves high performance in all benchmark pro-
grams except for LU, which had already attained the ideal
speedup. Especially in a benchmark of high page transfer
frequency, such as MM, Mocha achieves a drastic speedup
as much as 92% on the 16-node configuration, compared
with the conventional communication method of not omit-
ting the acknowledgement.

5.4 Communication Error Frequency

Table 1 summarizes the number of errors in all commu-
nications on the S-DSM system of the Mocha base, which
does not use the proposed method. The sum of the commu-
nication errors at all nodes was divided by the benchmark
elapsed time to calculate the number of errors of the entire
PC cluster per second (the average of three measurements).

From Table 1, we see that communication errors occur
only in the SOR benchmark. In SOR, the communication
errors become more frequent as the number of nodes in-
creases. On the 16-node configuration, 1,360 errors occur
per second.

When a similar measurement was made with Mocha us-
ing the proposed method, the number of communication
error was zero in all benchmark including SOR. The pro-
posed method reduces the communication of the acknowl-
edgment. This might have eased traffic and reduced the
communication errors.

We measured the communication error frequency of a
S-DSM system on a PC cluster. We clarified that the com-

Figure 13. Omission of acknowledgment for
wait. Node 1 is the server that manages the
wait.

munication error frequency was very low and that using the
proposed method could greatly reduce the communication
errors.

6 Discussion

6.1 Omission of Acknowledgment for the Wait

We discussed a method of omitting acknowledgment for
page request and its implementation. As another type of
communication processing, this section discusses a method
of omitting acknowledgment in the wait process. Unlike
barrier process, the wait does not include the process of the
memory consistency.

Figure 13 shows the wait process at three nodes from
node 1 to node 3. To simplify the figure, the wait and wait-
grantserver functions of node 3 are omitted. In this figure,
node 1 is the server that manages the wait. Node 2 and
node 3 send a WAIT message to the server. The server
counts the number of the WAIT arrivals. If the server re-
ceives WAITs from every node, it end the wait and broad-
casts WAITGRANT to continue the application processing.
The nodes other than the server send a WAIT and wait for
WAITGRANT in a busy wait state. On receiving WAIT-
GRANT, each node calls the waitgrantserver function, exits
from the busy wait state, and continues the application pro-
cessing.

The page request proceeds with the communication be-
tween one client and one server. In contrast, the wait is dif-
ferent in that more than one client accesses a single server.

The wait process can be realized in the collection of
client-server communications. In the implementation, how-
ever, WAITGRANT may be received a long time after
WAIT is sent because of the processing dispersion between
nodes. It is then difficult to distinguish a timeout in waiting
for WAITGRANT and a timeout by a communication er-
ror. Sending WAIT several times not for a communication
error produces new communication overhead. Therefore,
the method of omitting the acknowledgment in the wait and

6

other communication requires a detailed study that consid-
ers the tradeoff of the new communication overhead.

6.2 Other Methods of Omitting the Acknowledg-
ment

By using the characteristic that the page request can be
handled as server-client processing as shown in Figure 2, we
proposed and evaluated a method of omitting the acknowl-
edgment for a page request in S-DSM.

In general, the message receiving side checks a sequen-
tial number on a message. If the number is different from
the expected value, a communication error is detected and
error recovery is attempted. This simple error detection
method, using a sequential number, may cause a great dis-
crepancy between the error occurrence time and the error
detection time and thus makes error recovery difficult.

Another method is to transmit one acknowledgment
message for n messages received. By increasing the value
of n, most of the acknowledgment overhead can be elimi-
nated. Even when this method is used, however, it is diffi-
cult to solve the problem of the great discrepancy between
the error occurrence time and the error detection time.

As a result of studying these candidates, we selected and
proposed the method comparatively effective and easy to
implement.

7 Conclusions

This paper discussed a technique to improve the S-DSM
performance on a PC cluster. For communication between
computation nodes in a PC cluster, TreadMarks, JIAJIA,
JUMP and several other S-DSM systems use the UDP
which does not provide the reliable communication between
the nodes. To detect and recover from a communication er-
ror, therefore, an acknowledgment is used for every mes-
sage transmission in the middleware layer.

Since the S-DSM system using the UDP does not always
need an acknowledgment for every message transmission,
we proposed a method of reducing the acknowledgment
overhead for a page request and discussed its implemen-
tation.

We implemented the proposed method on out S-DSM
system Mocha. The performance was measured with sev-
eral benchmark programs. From the evaluation results
in this section, the following conclusion can be obtained.
Mocha using the proposed method achieves high perfor-
mance in all benchmark programs except for LU, which had
already attained the ideal speedup. Especially in a bench-
mark of high page transfer frequency, such as MM, Mocha
achieves a drastic speedup as much as 92% on the 16-node
configuration, compared with the conventional communica-
tion method of not omitting the acknowledgement.

References

[1] Kai Li. IVY: A Shared Virtual Memory System for
Parallel Computing. In Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP’88),
volume 2, pages 94–101, 1988.

[2] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and
Willy Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Sys-
tems. In Proceedings of the Winter 94 Usenix Confer-
ence, pages 115–131, 1994.

[3] M. Rasit Eskicioglu, T. Anthony Marsland, Weiwu Hu,
and Weisong Shi. Evaluation of the JIAJIA Software
DSM System on High Performance Computer Archi-
tectures. In Proceedings of the Thirty-second Annual
Hawaii International Conference on System Sciences-
Volume 8, page 8012. IEEE Computer Society, 1999.

[4] Benny Wang-Leung Cheung, Cho-Li Wang, and Kai
Hwang. Migrating-Home Protocol for Implementing
Scope Consistency Model on a Cluster of Workstations.
In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
1999.

[5] Andrew S. Tanenbaum. Modern Operating Systems.
Prentice-Hall International Editions, 1992.

[6] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope
Consistency: A Bridge between Release Consistency
and Entry Consistency. In Proceedings of the eighth
annual ACM symposium on Parallel algorithms and ar-
chitectures, pages 277–287, 1996.

[7] Kenji Kise, Takahiro Katagiri, Hiroki Honda, and
Toshitsugu Yuba. Solving the 24-queens Problem us-
ing MPI on a PC Cluster. Technical Report UEC-IS-
2004-6, Graduate School of Information Systems, The
University of Electro-Communications, June 2004.

7

