
Technical Report UEC-IS-2005-3, Version 2005-08-19
Graduate School of Information Systems, The University of Electro-Communications

Mocha Version 0.2: Yet Another Software-DSM System

Kenji Kise†, Takahiro Katagiri†, Hiroki Honda†, and Toshitsugu Yuba†
† Graduate School of Information Systems
The University of Electro-Communications

Abstract

Software distributed shared memory (S-DSM) provides
an attractive parallel programming model. We are develop-
ing yet another S-DSM system, Mocha. Its design philoso-
phy is to achieve good performance for a large PC cluster
and to offer an easy to use S-DSM system. In the current
version of Mocha, the first goal is mainly attained by reduc-
ing the acknowledgment (Ack) overhead.

We show that an acknowledgment is not necessarily re-
quired for each message transmission in the middleware
layer. Then, a method to reduce the acknowledgment over-
head for a page request is mentioned. The method is imple-
mented in our S-DSM system Mocha Version 0.2.

We report the performance of Mocha Version 0.2 with
several benchmark programs on a 32-node PC cluster.

1 Introduction

As an environment for parallel computation, cluster sys-
tems using general-purpose personal computers (PC clus-
ters) are becoming popular. Because a PC cluster has no
shared memory, the message passing model is used to de-
velop applications in many cases. On the other hand, the
shared memory is an attractive programming model for par-
allel computers. Software distributed shared memory (S-
DSM) has been proposed to realize virtual shared memory
on a PC cluster as the middleware layer software. Since the
idea of S-DSM was proposed[1], several systems[2, 3, 4]
have been implemented.

Some S-DSM systems, such as TreadMarks and JIAJIA,
adopt the user datagram protocol (UDP) which does not
provide reliable communication between the nodes. To de-
tect a communication error and recover from it, therefore,
an acknowledgment (Ack) is used for every message trans-
mission. We show that an acknowledgment is not necessar-
ily required for each message transmission in the middle-
ware layer. Then, a method to reduce the acknowledgment
overhead for a page request is mentioned. The method is
implemented in our S-DSM system Mocha Version 0.2. We
report the performance of Mocha Version 0.2 with several

benchmark programs on a 32-node PC cluster.

2 Mocha: Yet Another S-DSM System

2.1 Design Philosophies and Implementation

Mocha is an S-DSM system being constructed with two
design philosophies: (1) It achieves good performance es-
pecially for a PC cluster of many computation nodes. (2) It
offers an S-DSM system easy to use as a parallel processing
environment.

Mocha is a home based S-DSM, where each page is
specified to a node by a user. Mocha is implemented to re-
alize a simple and scalable S-DSM system by rewriting the
JIAJIA with scope consistency[5]. The main difference be-
tween Mocha and JIAJIA is the reduction of acknowledge
overhead in coherence control for obtaining good perfor-
mance. The followings are points of the code simplification
in order to increase readability: (1) JIAJIA’s complicated
functions for such as home migration and load balancing are
removed. (2) Function interfaces are reorganized to make
optimization of the source code. (3) The current version of
Mocha supports Linux operating system only.

Table 1. The comparison of lines of code.

S-DSM LOC eLOC lLOC
TreadMarks 2,717 2,306 2,029
JIAJIA 2,728 2,304 2,012
Mocha 1,161 981 819

Mocha is written in C and code size is small. The com-
parison of code lines of three S-DSM systems is summa-
rized in Table 1. The data is obtained with Resource Stan-
dard Metrics Version 6.62. A line of code (LOC) is defined
as a line that is not a comment or blank line within a source
file. Effective line of code (eLOC) is defined as a LOC that
is not a stand-alone braces or parenthesis. Logical line of
code (lLOC) is defined as a code statement that ends in a
semicolon. In every measure, the code lines of Mocha is
less than half of JIAJIA and TreadMarks.

1

Table 2. The comparison of McCabe’s cyclo-
matic complexity[6].

S-DSM Total Max Average
TreadMarks 905 74 6.24
JIAJIA 710 53 5.30
Mocha 342 18 4.12

McCabe’s cyclomatic complexity[6] is the most widely
used member of a class of static software metrics. It mea-
sures the number of independent control paths of a program
module. The total cyclomatic complexity (Total), the max-
imum cyclomatic complexity (Max) and the average cyclo-
matic complexity (Average) of three S-DSM systems are
summarized in Table 2. The data is obtained with Resource
Standard Metrics Version 6.62. A function of more than 20
cyclomatic complexity is defined as the complex and high
risk module. Table 2 indicates that all functions of Mocha
are less than 20 cyclomatic complexity. They are not so
complex.

1 #define OP_NULL 100 /* null: */
2 #define OP_EXIT 101 /* server: exit */
3 #define OP_GETP 110 /* server: get page */
4 #define OP_GETPGRANT 111 /* server: getp grant */
5 #define OP_DIFF 112 /* server: diff */
6 #define OP_DIFFGRANT 113 /* server: diff grant */
7 #define OP_BARR 114 /* server: barrier */
8 #define OP_BARRGRANT 115 /* server: barr grant */
9 #define OP_ACQ 116 /* server: aquire */

10 #define OP_ACQGRANT 117 /* server: aquiregrant */
11 #define OP_WAIT 118 /* server: wait */
12 #define OP_WAITGRANT 119 /* server: wait grant */
13 #define OP_INV 120 /* server: invalidate */
14 #define OP_WTNT 121 /* server: w-notice */
15 #define OP_REL 122 /* server: release */
16 #define OP_BCAST 123 /* server: broadcast */

Figure 1. The list of message types used by
Mocha Version 0.2.

Figure 1 is the list of message types used by Mocha
Version 0.2. If a page fault occurs in referencing the non-
cached shared memory, the page request (getpage) acquires
the page from a node that has the requested page. Mocha
Version 0.2 reduces the acknowledgment overhead of mes-
sages GETP and GETPGRANT for the page request.

2.2 Omission of Acknowledgment Messages

Mocha is unique by using the concept of acknowledge-
ment omission. Figure 2(a) shows how three messages,
Msg-1, Msg-2, and Msg-3, are sent from node 1 to node 2.
This is an example of conventional S-DSM communication.
When the messages are received, node 2 on the receiving
side immediately returns acknowledgment (Ack) messages
Ack-1, Ack-2, and Ack-3 respectively.

Figure 2. S-DSM Communication with and
without acknowledgment.

Figure 3. Communication in a client-server
model [7].

Figure 2(b) shows a communication without acknowl-
edgment. If all transmitted messages are received without
error, the acknowledgment costs can be reduced as shown
in (b). Omitting all acknowledgment messages means re-
ducing the general send-receive message count in half. This
is expected to enhance the communication performance, es-
pecially in applications with frequent messages. In the UDP
communication, however, an error occurs by a certain fre-
quency. The examples of communication errors are shown
in Figure 2 (c) and (d). Msg-2 does not reach the destina-
tion node in (c), and the arriving order of Msg-2 and Msg-3
cannot be guaranteed in (d). Despite of these communica-
tion errors, S-DSM systems should be constructed to oper-
ate correctly.

As shown in Figure 2(b), Mocha improves S-DSM per-
formance by omitting acknowledgment messages. Note that
the idea of the acknowledgment omission is not novel. For
example, reference [6] discusses a technique of omitting ac-
knowledgments in a client-server model. Figure 3 is the
communication used in this discussion. An acknowledg-
ment for the request can be omitted by using a reply mes-
sage as its acknowledgment. Also an acknowledgment for
the reply shown as the broken line in Figure 3(b) can be
omitted depending on the properties of the reply. Mocha is

2

Figure 4. (a) The behavior of a page request.
(b) Page request without acknowledgment.

the first S-DSM where the concept of the acknowledgment
omission in a client-server model is applied.

2.2.1 Ack Omission for Page Request

Figure 4(a) shows the behavior of a page request. Suppose
that node 1 requires a page and node 2 has the page. Node 1
calls the getpage function with the referenced memory ad-
dress as a argument. The getpage function creates a GETP
message corresponding to the page request and transmits it
to node 2. On receiving this message, node 2 returns an
acknowledgment (Ack) message as a reply. To meet the
page request, node 2 then calls the getpserver function. This
function packs the necessary page information in a GETP-
GRANT message and sends it to node 1. On receiving
the GETPGRANT message, node 1 calls the corresponding
getpgrantserver function. This function stores the received
page information in an appropriate memory area and resets
the global variable to terminate the getpage function. The
getpage function waits in a busy wait state for the page to
arrive. When GETPGRANT arrives, the getpage function
exits from the busy wait state and continues the application
processing.

The getpage function sends a GETP message and waits
in a busy wait state. In this kind of page request process-
ing flow, the exit of the getpage function from the busy wait
state guarantees that no communication errors occurred in
the two messages of GETP and GETPGRANT. If the func-
tion did not receive the GETPGRANT message within the
timeout limit in the busy wait state, a communication error
might have occurred. In this case, the GETP message is sent
again and the system waits for the GETPGRANT message.
The system should be designed to have no problems, even
if the same message of GETP or GETPGRANT arrives sev-
eral times. Using the GETPGRANT as an acknowledgment
of GETP, acknowledgment of GETP or GETPGRANT can
be omitted as shown in Figure 4(b).

Figure 5 shows the pseudo-code of the original getpage
for which the acknowledgment is not omitted. Line 2 sets

1 void getpage(address_t addr){
2 getpwait=1;
3 generate_message(OP_GETP, addr);
4 send_message();
5 while(getpwait); /** busy wait **/
6 }

Figure 5. The pseudo-code of the original get-
page for which the acknowledgment is not
omitted.

1 void getpage(address_t addr){
2 getpwait=1;
3 for(i=0; i<GETPAGE_MAX_RETRY; i++){
4 generate_message(OP_GETP, addr);
5 send_message();
6 while(not_timeout() && getpwait); /*busy wait*/
7 if(getpwait==0) break;
8 }
9 }

Figure 6. The pseudo-code of the function
getpage to be implemented in the Ack omis-
sion. The while loop in Line 6 finishes when
the global variable getpwait has been reset or
a timeout has occurred.

the global variable getpwait, Line 3 generates a page re-
quest message, and Line 4 transmits the generated message.
When a message corresponding to the request arrives, the
received page is stored appropriately and the global vari-
able getpwait is reset. This finishes the while loop in Line 5
and terminates the page request function getpage.

Figure 6 is the pseudo-code of the function getpage to be
implemented in the Ack omission. The while-loop in Line
6 finishes when the global variable getpwait has been reset
or a timeout event has occurred. If the variable getpwait
equals to zero in Line 7, the getpage is terminated because
the requested page is assumed to have been received. Oth-
erwise, the for-loop from Line 3 transmits the page request
message again.

2.2.2 Implementation of Ack Omission

This section discusses the implementation of the Ack omis-
sion.

To identify a message type, the S-DSM system Mocha
uses a char-type variable of 8 bits. As summarized in Fig-
ure 3, however, not all of the 8 bits are used because the
number of message types is only 16. Therefore, the low-
order 7 bits are used to indicate an message type and the
highest-order bit is used as a flag to indicate whether the
message requires acknowledgment. This bit is called the
reliable msg flag. The system sends an acknowledgment
only when reliable msg flag is set.

Figure 7 shows the pseudo-code of the message trans-

3

1 #define MSG_MASK 0x80 /* 10000000 */
2 void send_one_message(){
3
4 if(sendqh->op==OP_GETP ||
5 sendqh->op==OP_GETPGRANT)
6 sendqh->op = sendqh->op | MSG_MASK;
7
8 for(i=0; i<MAX_RETRY; i++){
9 ret = sendto(message);

10 if(sendqh->op & MSG_MASK) return;
11
12 while(not_timeout())
13 if(FD_ISSET(fds[serverproc], &fds)!=0){
14 recvfrom(message);
15 }
16 }
17 }

Figure 7. The pseudo-code of the message
transmission function send one message.

mission function send one message. If the message
is GETP or GETPGRANT (Line 4 and 5), the reli-
able msg flag is set in Line 6. The sendto in Line 9 trans-
mits the message. If the reliable msg flag is set, the return
in Line 10 can terminate the transmission function immedi-
ately and start the next processing because there is no need
to wait for the acknowledgment. Otherwise, it is necessary
to wait for the acknowledgment message. The while loop
from Line 12 to Line 15 waits for the acknowledgment and
then terminates the send one message function.

The message receiving section checks the reli-
able msg flag of the received message. Like the con-
ventional system, the system transmits an acknowledgment
message only when this flag is not set.

We use the code shown in Figure 6 as getpage function
to transmit a page request message (GETP). As a result of
the parameter adjustment, the timeout interval is set to 40
ms. Therefore, if a page request message is sent again by a
communication error, the overhead of 40ms is imposed on
a system.

3 Performance Evaluation

This section evaluates the performance of S-DSM
Mocha Version 0.2. A Mocha system that does not use the
Ack omission is called the Mocha base here.

3.1 Environment

For the evaluation, we use a PC cluster where 32 per-
sonal computers are connected with a 48-port gigabit Eth-
ernet switch (HP ProCurve Switch 3400cl-48). Each node
is an SMP (symmetric multi-processor) type computer with
two processors of Intel Pentium 4 Xeon (2.8 GHz) and 1 GB
memory. Although each node is an SMP computer, only
one process is assigned per each node. The system software
of the cluster is SCore 5.6.1 by PC Cluster Consortium[8]

constructed on RedHat Linux 7.3. The execution time of
each benchmark program is calculated by the arithmetic
mean of five measurements.

3.2 Benchmark Programs

As the benchmark programs, we use N-queens[9], LU
(parallel dense blocked LU factorization, no pivoting), SOR
(Red-Black Successive Over-Relaxation) and MM (Matrix
Multiply). The object code of the benchmark programs is
generated using GCC version 2.96 compiler with the opti-
mization option O2.

As a parameter of N-queens, the problem size N=17 and
the task allocation size of 8 is used. The elapsed time of the
sequential version is 55.0 second.

As a parameter of LU, the matrix size of 1024×1024,
and the block size of 8 is used. The element of the matrix is
double precision. The elapsed time of the sequential version
is 267 second.

As a parameter of SOR, the matrix size of M=4096 and
N=4096, iterations=400 is used. The elapsed time of the
sequential version is 98.1 second.

As a parameter of MM, the matrix size of 1280×1280 is
used. The element of the matrix is double precision. The
elapsed time of the sequential version is 9.14 second.

3.3 Performance Comparison

Figures 8 to 11 summarize the results with the number
of nodes on the x-axis and the speedup on the y-axis. The
speedup is normalized by the elapsed time of JIAJIA single
node. There are results for JIAJIA Version 2.2, TreadMarks
Version 1.0.3.3 (in Figures 10 and 11 only), and Mocha Ver-
sion 0.2 using the Ack omission (Mocha) and not omitting
the acknowledgment (Mocha base).

The LU benchmark result is shown in Figure 8. The al-
most optimal speedup is achieved by increasing the number
of nodes in every S-DSM system since the traffic in LU is
small compared with the calculation.

The N-queens benchmark result is shown in Figure 9.
The speedup on the 16-node configuration is 11.0 for JIA-
JIA and 11.7 for Mocha. The mocha is 6% faster than the
JIAJIA on the 16-node configuration. In the case of 32-
node configuration, the performance of every S-DSM sys-
tem drops extremely because of the lock and unlock con-
tention.

The SOR benchmark result is shown in Figure 10. The
speedup on the 32-node configuration is 15.5 for JIAJIA
and 20.4 for Mocha. The Mocha is 31% faster than the JI-
AJIA on the 32-node configuration. Some parameters of
Mocha are set up so that its performance may become the
optimal on the 32-node configuration. Therefore, Tread-
Marks shows the best speedup on the configurations of less
than 32-node.

4

Table 3. The average number of communication errors on Mocha for page request.

benchmark 2-node (2 CPU) 4-node (4 CPU) 8-node (8 CPU) 16-node (16 CPU) 32-node (32 CPU)
N-queens 0.00 0.00 0.40 1.40 1.80
LU 0.00 0.00 0.40 1.80 4.00
SOR 0.00 0.00 0.20 0.80 1.20
MM 0.00 0.00 0.00 1.60 6.20

Figure 8. The performance comparison of the
S-DSM systems. Benchmark is LU.

Figure 9. The performance comparison of the
S-DSM systems. Benchmark is N-queens.

Figure 10. The performance comparison of
the S-DSM systems. Benchmark is SOR.

Figure 11. The performance comparison of
the S-DSM systems. Benchmark is MM.

5

The MM benchmark result is shown in Figure 11. In
MM execution, the message GETP and GETPGRANT ac-
count for most of the elapsed time of all communications.
Therefore, the Ack omission for the page request pro-
duces remarkable effects. The conventional systems, JI-
AJIA, TreadMarks and Mocha base, do not show perfor-
mance improvement where the configuration of more than
8 nodes. Even on the 16-node and 32-node configurations,
however, Mocha using the Ack omission keeps performance
improvement. Mocha achieves the speedup of 6.68 on the
32-node configuration. Compared with the 16-node Mocha
base, the 16-node Mocha achieves a speedup as large as
58%.

Table 3 summarizes the number of errors (the sum of the
communication errors at all nodes) for page request by the
S-DSM system Mocha, which uses the Ack omission. The
data is calculated by the arithmetic mean of five measure-
ments. From Table 3, we see that the frequency of errors is
very low.

From the evaluation results in this section, the following
conclusion can be obtained. Mocha using the Ack omis-
sion achieves high performance in all benchmark programs
except for SOR on small node configurations. Especially
in a benchmark of high page transfer frequency, such as
MM, Mocha achieves a drastic speedup as much as 58%
on the 16-node configuration, compared with the conven-
tional communication method of not omitting the acknowl-
edgment.

4 Conclusions

We introduced the S-DSM Mocha Version 0.2. We show
that an acknowledgment is not necessarily required for each
message transmission in the middleware layer. Then, a
method to reduce the acknowledgment overhead for a page
request is mentioned. The method is implemented in our
S-DSM system Mocha Version 0.2.

We reported the performance of Mocha Version 0.2 with
several benchmark programs. From the evaluation results,
the following conclusion can be obtained. Mocha using the
Ack omission achieves high performance in all benchmark
programs except for SOR on small node configurations. Es-
pecially in a benchmark of high page transfer frequency,
such as MM, Mocha achieves a drastic speedup as much
as 58% on the 16-node configuration, compared with the
conventional communication method of not omitting the ac-
knowledgment.

Acknowledgement

S-DSM Mocha Version 0.2 is implemented to realize a
simple and scalable S-DSM systemby rewriting the JIA-
JIA. We would like to thank the JIAJIA authors and Center
of High Performance Computing, Institute of Computing
Technology, Chinese Academy of Sciences. This project is

partially supported by Grand-in-Aid for Fundamental Sci-
entific Research B(2) #16300004 from Ministry of Educa-
tion, Culture, Sports, Science and Technology Japan.

A Installing and Running Mocha

The contents of the README.txt in a distribution file
mocha-0.2r2.tgz are as follows.

--
Mocha Version 0.2 Release Note, 2005-08-17
by Kenji KISE, UEC

--
Mocha is an S-DSM system being constructed with
two design philosophies: (1) It achieves good
performance especially for a PC cluster of many
computation nodes. (2) It offers an S-DSM system
easy to use as a parallel processing environment.

Mocha Version 0.2 is free software. See the file
COPYING for copying permission.

--
1.0 Package Organization

COPYING : GNU GENERAL PUBLIC LICENSE Version 2
README.txt : this document file
mocha.c : Mocha source code
jia.h : JIAJIA’s original header file
main.c : sample application(Matrix Multiply)
Makefile : make file to build executable

--
2.0 Quick Start

--
2.1 Edit the set_hosts function for your cluster

Please edit the function set_hosts in mocha.c to
adjust your cluster configuration.
The arguments of host_set are node-ID, node name,
and IP address. The first Node-ID must have the
value of 0.

This is the original set_hosts function.

void set_hosts(int *host_max){
int i;
*host_max = 32;

for(i=0; i<32; i++){
char name[512];
char addr[512];
sprintf(name, "comp%02d.score", i);
sprintf(addr, "192.168.208.%d", 200+i);
host_set(i, name, addr);

}

/**
host_set(0, "comp00.score", "192.168.208.200");
host_set(1, "comp01.score", "192.168.208.201");
host_set(2, "comp02.score", "192.168.208.202");
host_set(3, "comp03.score", "192.168.208.203");
host_set(4, "comp04.score", "192.168.208.204");
host_set(5, "comp05.score", "192.168.208.205");
host_set(6, "comp06.score", "192.168.208.206");

6

host_set(7, "comp07.score", "192.168.208.207");
**/

}

If you have three hosts of node0.domain,
node1.domain, and node2.domain, the set_hosts
function looks like this.

void set_hosts(int *host_max){
*host_max = 3;
host_set(0, "node0.domain", "192.168.208.200");
host_set(1, "node1.domain", "192.168.208.201");
host_set(2, "node2.domain", "192.168.208.202");

}

If you have three hosts of node0.domain,
node1.domain, and node2.domain and want to run
two process per one node, the set_hosts function
looks like this.

void set_hosts(int *host_max){
*host_max = 6;
host_set(0, "node0.domain", "192.168.208.200");
host_set(1, "node0.domain", "192.168.208.200");
host_set(2, "node1.domain", "192.168.208.201");
host_set(3, "node1.domain", "192.168.208.201");
host_set(4, "node2.domain", "192.168.208.202");
host_set(5, "node2.domain", "192.168.208.202");

}

--
2.2 Compilation

Just type make will generate an executable a.out.

--
2.3 Execution

The -Q option is available to specify the number
of nodes to be used.

This is the command to use two nodes.
% a.out -Q2

This is the command to use four nodes.
% a.out -Q4

--
2.4 The Ack omission

The -S option enables the Ack omission.
If you want to use four nodes and run with Ack
omission.
% a.out -Q4 -S

--

References

[1] Kai Li. IVY: A Shared Virtual Memory System for
Parallel Computing. In Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP’88),
volume 2, pages 94–101, 1988.

[2] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and
Willy Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Sys-

tems. In Proceedings of the Winter 94 Usenix Confer-
ence, pages 115–131, 1994.

[3] M. Rasit Eskicioglu, T. Anthony Marsland, Weiwu Hu,
and Weisong Shi. Evaluation of the JIAJIA Software
DSM System on High Performance Computer Archi-
tectures. In Proceedings of the Thirty-second Annual
Hawaii International Conference on System Sciences-
Volume 8, page 8012. IEEE Computer Society, 1999.

[4] Benny Wang-Leung Cheung, Cho-Li Wang, and Kai
Hwang. Migrating-Home Protocol for Implementing
Scope Consistency Model on a Cluster of Workstations.
In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
1999.

[5] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope
Consistency: A Bridge between Release Consistency
and Entry Consistency. In Proceedings of the eighth
annual ACM symposium on Parallel algorithms and ar-
chitectures, pages 277–287, 1996.

[6] Thomas J. McCabe. A Complexity Measure. IEEE
Transaction on Software Engineering, SE-2(4):308–
320, 1976.

[7] Andrew S. Tanenbaum. Modern Operating Systems.
Prentice-Hall International Editions, 1992.

[8] http://www.pccluster.org/index.html.en/. PC Cluster
Consortium.

[9] Kenji Kise, Takahiro Katagiri, Hiroki Honda, and
Toshitsugu Yuba. Solving the 24-queens Problem us-
ing MPI on a PC Cluster. Technical Report UEC-IS-
2004-6, Graduate School of Information Systems, The
University of Electro-Communications, June 2004.

7

