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Final Exam
N\

* https://www.arch.cs.titech.ac.jp/lecture/CA/

. 2023-12-01 (13:30-15:10)
final exam in the computer room of the department of
computer science
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A Typical I/0 System and interrupts

Processor

Interrupts

Cache

Main
Memory
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Communication of I/0O Devices and Processor (1)

\
» How the processor directs the I/0 devices X

* Memory-mapped I/0
 Portions of the high-order memory address space
are assigned to each I/0O device

* Read and writes to those memory addresses are
interpreted
as commands to the I/0 devices

 Load/stores to the I/O address space can only be
done by the OS

« Special I/0 instructions
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Communication of I/0 Devices and Processor (2) x
\

« How the I/0 device communicates with the

processor
* Polling — the processor periodically checks the status of
an I/0 device to determine its need for service
* Processor is totally in control — but does all the work
« Can waste a lot of processor time due to speed
differences
* Interrupt-driven I/O — the I/0 device issues an
interrupts to the processor to indicate that it needs
attention
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Interrupt-Driven Input

\

1. input
interrupt add
Processor \ sub
and
2.1 save state 4// of
] .
— l
Memory Recelver 5o t
) .2 jump to
interrupt |
Keyboard service routine lsbbu
2.4 return\ |r
to user code )
memory
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Interrupt-Driven Output

1.output
interrupt ~dd
Processor <ub Cor
gpd - program
2.1 save state / beg
J
: |
Memory Trnsmttr 2.2 jutnp to ) 3 sorvice
| interrupt | | interrupt
Display service routine Isbbu .
outpu
2.4 \ e inteerupt
S 1 service
to user code | semice
memory
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Interrupt-Driven I/0

\

An I/0 interrupt is asynchronous

« TIs not associated with any instruction so doesn’t prevent any instruction
from completing

« You can pick your own convenient point to handle the interrupt

With I/0 interrupts
* Need a way to identify the device generating the interrupt
« Can have different urgencies (so may need to be prioritized)

Advantages of using interrupts

* No need to continuously poll for an I/0 event; user program progress is
only suspended during the actual transfer of I/0 data to/from user

memory space

Disadvantage — special hardware is needed to

« Cause an interrupt (I/0 device) and detect an interrupt and save the
necessary information o resume normal processing after servicing the
interrupt (processor)

Af_a'
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Direct Memory Access (DMA)
\

« For high-bandwidth devices (like disks) interrupt-driven
I/0 would consume a lot of processor cycles

* DMA - the I/0 controller has the ability to transfer data
directly to/from the memory without involving the
processor

« There may be multiple DMA devices in one system

Interrupts
Processor < _/

~~—_|

Cache

Main I/O 110 I/O
Memory Controller Controller Controller

K CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9




Direct Memory Access (DMA) how to0?

\
1. The processor initiates the DMA transfer by supplying x
1. the I/0 device address
2. the operation to be performed
3. the memory address destination/source
4. the number of bytes to transfer.
2. The I/0 DMA controller manages the entire transfer
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller

interrupts the processor to let it know that the transfer
is complete

 Cache Coherence

™
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I/0 and the Operating System

\
« The operating system acts as the interface between the %%
I/0 hardware and the program requesting I/0

« To protect the shared I/0 resources, the user program is
not allowed to communicate directly with the I/O device

« Thus OS must be able to give commands to I/0 devices,
handle interrupts generated by I/0 devices, provide fair
access to the shared I/0 resources, and schedule I/0
requests to enhance system throughput

« I/O interrupts result in a transfer of processor
control to the supervisor (OS) process
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From multi-core era to many-core era

T e ——— ——

Many-core Era
Massively parallel
applications

- 1004
Increasing HW
Threads

Per Socket Multi-core Era
104 Scalar and
parallel applications

2003 2005 2007 2009 2011 2013

Figure 1: Current and expacted eras of Intel® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Instruction pipeline of out-of-order (OoO) execution

Retire

RF

Instruction
In-order front-end window
Instruction | Instruction| Register |Register Read/
Fetch Decode Renaming | Dispatch Out-of-order back-end

Execute/ :
Issue Memory Commit

]

ROB | | | | [ [ [ | | [ | | |
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Aside: what is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

A

which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
(G) 10

Instructions to be executed for an application

Large instruction window

O T T T T T T T T T T T T ]

Instruction window
(c)

Instruction window
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Pollack's Rule

\

* Pollack’s Rule states that microprocessor
"performance increase due to microarchitecture
advances is roughly proportional to the square root of
the increase in complexity".

Complexity in this context means processor logic, i.e.
Its area.

« Superscalar, vector
« Instruction level parallelism, data level parallelism

~ =
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Multithreading (1/2)

\

* During a branch miss recovery and access to the main memory by a cache miss,

ALUs have no jobs to do and have 1o be idle.

« Executing multiple independent threads (programs) will mitigate the overhead.
« They are called coarse- and fine-grained multithreaded processors having

multiple architecture states.

Thread 1 S context switch code Thread 2
Processor
Irtermapt, esccephion, or O cali rebam from excephon ?
Thread 1 Thread 2 Thread 3 Thread 1
Coarse-gramed
Multlthreaded
Carhe muss Carhe mass T Carhe muss T

o HEEHIHHEEHEIE!E@!I

Execution T
Units Time
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Multithreading (2/2)
\

« Simultaneous Multithreading (SMT) can improve hardware resource usage.

Thread 1 5 context switch code Thread 2
Processor
Imterma pt, escephon, or C6 a]l rebum fromm excephion T
_'B) Thread 1 Thread 2 Thread 3 Thread 1
Coarse-grained
Multithreaded
( Cache muss Cache nass T Cache nass ?
')
Fine-grained
Multithreaded
(FMT)
D)
Simultaneous
Multithreaded
(SMT)
Execution T
Units Time
Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support
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From multi-core era to many-core era

EV6 EV6 EV6
Ev4
EVE- EV6 EV6 EV6
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36
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From multi-core era to many-core era
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Per Socket
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Many-core Era
Massively parallel
applications

Multi-core Era
Scalar and
parallel applications

2003 2005

2007 2009 2011

Figure 1: Current and expacted eras of Intel® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Intel Sandy Bridge, January 2011
T —— —

* 410 8 core
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Performance Metrics of Interconnection Network X
\

« Network bandwidth (NB)
— represents the best case

* bandwidth of each link * number of links

« Bisection bandwidth (BB)
— represents the worst case

« divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line
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Bus Network

\
« N processors, 1switch (@), 1link (the bus) 2%
« Only 1 simultaneous transfer at a time

« NB (best case) = link (bus) bandwidth * 1

« BB (worst case) = link (bus) bandwidth * 1

L Bidirectional

network switch Processor node
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Ring Network x
\

* N processors, N switches, 2 links/switch, N links

* N simultaneous transfers
« NB (best case) = link bandwidth * N
« BB (worst case) = link bandwidth * 2

« If alinkis as fast as a bus, the ring is only twice as fast as
a bus in the worst case, but is N times faster in the best
case
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Cell Broadband Engine (2005)

« Cell Broadband Engine (2005)
« 8 core (SPE) + 1 core (PPE)
« each SPE has 256KB memory
« PS3, IBM Roadrunner(12k)

PlayStation3 N EE I
PlaySation.com (Japan) M5

BEE] SPE1 SPE3 SPES5| SPE7 10IF1

. 1 1

| | —

—

o

@

o

(7 : :
Data network Data bus arbiter ) o
& - - - - - <
| c

- - e g’

w

[ | ] i
c

©

BIF s

MIC SPEO SPE2 SPE4 SPE6 I0IFO g
@

@

o

BIF Broadband interface
I0IF /O interface

Figure 2. Element interconnect bus (EIB).

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

ﬁ Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA
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Crossbar (Xbar) Network

A
processors, N? switches (unidirectional), 2 links/switch, 2%
2 links
simultaneous transfers

NB = link bandwidth * N
« BB = link bandwidth * N/2

e Z2 2 Z

CACACAL
CACACAL
cALACAL
CICACAC
|
|

ﬁ’ A symbol of Xbar
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Tree

« Trees are good structures. People in CS use them all the
time. Suppose we wanted to make a tree network.

« Any time A wants to send to C, it ties up the upper links, so
that B can't send to D.

* The bisection bandwidth on a tree is horrible - 1 link, at all

times

« The solution is to "thicken' the upper links.
* More links as the tree gets thicker increases the bisection

bandwidth

A

B

C
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Fat Tree i\%

« N processors, log(N-1)*logN switches, 2 up + 4 down = 6
links/switch, N*logN links

* N simultaneous transfers
+ NB = link bandwidth * N log N
BB = link bandwidth * 4

e SN

N = 4 N

K CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 28

"
00)



Mesh Network

\
* N processors, N switches, 4 links/switch, N * (N/2 - 1) Iinks%%

« N simultaneous transfers
 NB = link bandwidth * 2N
e BB = link bandwidth * N1/2

HE

N=4
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2D and 3D Mesh / Torus Network

We
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I
—

T

s
i
i
i

L AAD

2D Mesh Torus
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Intel Skylake-X, Core i9-7980XE, 2017

« 18 core

S

CORE 19

X-series
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Bus vs. Networks on Chip (NoC)
S0 Y. K on

« Circuit switching

« a communication method where a dedicated communication
path, or circuit, is established between two devices before
data transmission begins

 Packet switching

"~ A : ;. = &_ .
. % Y ™y b o
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NoC and Many-core

« NoC requirements: low latency, high throughput, low cost
* Focus on mesh topology

* Packet based data transmission via NoC routers and
XY-dimension order routing

oy | | [ ] , | ]
S1 - Sl 52 L]
Y
53 D2 . D2
DI D3 Sl D D3
(a) XY routing (b) Y X routing
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NoC and Many-core

PM PM PM PM
0,3 1,3 2,3

packet
e (tag + data)
o | | (%] [ |

PM: Processing Module or Core
R: Router

XY-dimension order routing

K CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 34



Simple NoC router architecture

« Routing computation for XY-dimension order

Node (3, 3) N
Flit Route info vC Payload Packet from

node (1, 3) to

node (3, 1)
N (Y-) N (Y-)
E (X+) E (X+)
S (¥+) S (¥+)
W (X-) W (X-)
PM PM
(Module) (Module)
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Simple NoC router architecture
T —— S— ———— — —~ \

 Buffering and arbitration N
 time stamp based, round robin, etc.

N (Y-) N (¥-)
(TT . :

E (X+) E (X+)

S (Y+ S (Y+

2 T 1 X v

W (X-) / W (X-)
(TTH ‘

PM PM

(Module) (Module)
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Simple NoC router architecture

 Flow control N

N (Y-) N (¥-)
E (X+) E (X+)
S (Y+) S (Y+) N (Y-)
(111} 4 X [TIT}+—
/ FIFO full?
W (X-) W (X-)
HEEN -
PM PM
(Module) (Module)

South router
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Simple NoC router architecture

« Problem: Head-of-line (HOL) blocking N

N (Y-) N (Y-)

E (X+) E(X+)

S (¥+) / seys) N

FIFO full?
W (X-) W (X-)

FIFO

PM PM
(Module) (Module)

South router
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Two (physical) networks to mitigate HOL ?

N (Y-) HOL blocking N (¥-)
N (Y-) HOL blocking N 0{_) o0 \ o
E (X+) \ E (X+) S (Y+) S (Y+)
—{ I I T+ - g .
N (Y-) HOL blocking N (Y-) X
— — > W (X-)
S (Y+) TTT S (Y+) P >
X . FIFO full E (X+) E (X+) PM
! (Module)
WX W (X-) I .
—{ I I T+ >
o0 T Sl
PM PM D
(Module) (Module) X FIFO full
—{ I I T FH— >
X- W (X-
2O o
PM PM
Simple NoC router (Module) 1 (Module)
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Datapath of Virtual Channel (VC) NoC router

To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-)

E (X+)

S (Y+)

W (X-)

PM

(Module

—{ [}

HOL blocking
—{TTt+——

L o gy MR

N (Y-)

E (X+)

S (Y+)

FIFO full

W (X-)

PM
(Module)

<

Simple NoC router

Flit

Route info Ve

Payload

N (Y-)

I:l:l:l:l VCo

VCl
[T T T

E (X+)

I:l:l:l:‘ ve2
I:l:l:l:l VCco

S (Y+)

(T 11—=

I:l:l:l:‘ ve2

I:l:l:l:l vco

W (X-)

(T 1+~

Dj:D ve2

I:l:l:l:l VCo
1
I|—|—|—|—|I - Ve

PM
(Module)

I:l:l:l:‘ ve2

I:l:l:l:l vco
(T~

I:l:l:l:‘ ve2

A

N (Y-)

E (X+)

S (Y+)

FIFO ful

W (X-)

PM
(Module)

VC NoC router
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Bus vs. Networks on Chip (NoC) of mesh topology
. —_— .y, . B

Pipelined NoC router
Packet of multiple flits

To mitigate
head-of-line (HOL) blocking

Virtual Channel
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From multi-core era to many-core era

T T

—_— .y, ———

100§
Increasing HW
Threads
Per Socket

10 ¢

Multi-core Era
parallel applications

Many-core Era
Massively parallel
applications

Scalar and

2003 2005

2007 2009 2011 2013

Figure 1: Current and expacted eras of Intel® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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2021.11 Intel Alder Lake processor

Scalable Client Architecture

Desktop Mobile Ultra Mobile

LGA1700 BGA Type3 BGA Typed4 HDI
Socket 50x25x1.3mm 285x19x 1.1mm




2022.11 AMD EPYC 9654 processor with 96 cores

™ AMDA
A M D E pvc 9 0 0 4 Cores =rPYC Base/Boost* w,uwowm Default TDP (w) cTDP (w)
. 96cores 9654/P 2.40/3.70 360w 320-400w
Series Processor

84 rores

64cores 9554/P  310/375 360w 320-400w
64 cores 2.45/3.70 280w 240-300w

All-in Feature Set support s = R

48 cores e
/ -3 A
* 12 Channels of DDRS-4800 273/3:80 290: 500w
32 cores 3.85/4.30
Up to 6TB DDRS memory capacity S ores oasam B 325250 240-300w

128 lanes PCle® 5 32cores 9334 2.70/3.90 200-240w

64 lanes CXL 1.1+ s TR S

24 cores 2.90/415 200-240w
2.50/3.70 200-240w

AVX-512 ISA, SMT & core frequency boost

AMD Infinity Fabric™

AMD Infinity Guard 3.00/3.70 200-240w
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The Free Lunch Is Over
S — —_— .y, — o

« Tuning, Optimization, and Parallel processing (Concurrency)

Free Lunch

Programmers haven't The traditional approach
really had to worry to application

much about performance was to
performance or simply wait for the next
concurrency because generation of processor;
of Moore's Law most software

developers did not need
to invest in performance

tuning, and enjoyed a
Why we did not see 4GHz “free lunch” from
processors in Market? hardware
.~ improvements.

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

K CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH
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Distributed Memory Multi-Processor Architecture

A PC cluster or parallel computers for higher performance
Each memory module is associated with a processor
Using explicit send and receive functions (message passing) to obtain the data

required.
Who will send and receive data? How?

<

PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
A A A A
A4 A 4 A 4 A\ 4
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)

A 4

PC cluster

Interconnection network

SC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

A

46



Shared Memory Multi-Processor Architecture
\

All the processors can access the same address space of the main memory (shared
memory) through an interconnection network.

The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

What are the means to obtain the shared data?
What are the advantages of shared memory?

System
Chip Chip Chip Chip
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Main memory (DRAM) I/0
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Shared memory many-core architecture

The single-chip integrates many cores (conventional processors) and an
intferconnection network.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network

A 4 A 4

Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

K CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH
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Cache Coherence Problem

3
* Processors see different values for shared data u after event 3 %%

«  With write-back caches, value written back to memory depends on
which cache flushes or writes back value when

« Processes accessing main memory may see stale (out-of-date) value
« Unacceptable for programming, and its frequent!

@\ I/0 devices
] @)




Cache coherence and enforcing coherence %\%
\

 Cache coherence

* All reads by any processor must return the most recently
written value

« Writes to the same location by any two processors are seen
in the same order by all processors

« Cache coherence protocols

 Snooping (write invalidate / write update)
« Each core tracks sharing status of each block

» Directory based
« Sharing status of each block kept in one location
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Memory consistency: problem in multi-core context X
\

« Assume that A=0 and Flag=0 initially

« Core1(Cl) writes data into A and sets Flag to tell C2 that data value
can be read (loaded) from A.

« C2 waits till Flag is set and then reads (loads) data from A.
« What is the printed value by C2?

Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

K CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH o1



Problem in multi-core context X
\

« If the two writes (stores) of different addresses on C1 can be
reordered,

* This can happen on most modern processors.

* For single-core processor, Codel and Code?2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

Codel Code?2
A = 3; Flag = 1;
Flag = 1; A = 3;
C1 (Core 1) C2 (Core 2)
Flag = 1; while (Flag==0);
print A;
A= 3;

e The printed value by C2 will be O or 3.
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Memory Consistency Models

\
A single-core processor can reorder instructions subject only to \
control and data dependence constraints

* These constraints are not sufficient in shared-memory multi-cores
 simple parallel programs may produce counter-intuitive results

* Question: what constraints must we put on single-core instruction
reordering so that

* shared-memory programming is intuitive
« but we do not lose single-core performance?

» The answers are called memory consistency models supported by
the processor

« Memory consistency models are all about ordering constraints on
independent memory operations in a single-core's instruction stream
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« Interconnection network
« connecting many modules on a chip achieving high throughput
and low latency with NoC routers
* Main memory and caches
* Caches are used to reduce latency and to lower network traffic
« A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

Key components of many-core processors \
.

¢ Cor‘e System
« High-performance superscalar

processor providing a hardware
mechanism to support thread

sy n C h r.o n i zaT i O n Interconnection network

Main memory (DRAM) I/0
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