2023年度(令和5年)版

Ver. 2023-11-21a

Course number: CSC.T363

コンピュータアーキテクチャ Computer Architecture

12. ベクタ、SIMDにおけるデータレベル並列性 Data-Level Parallelism in Vector and SIMD

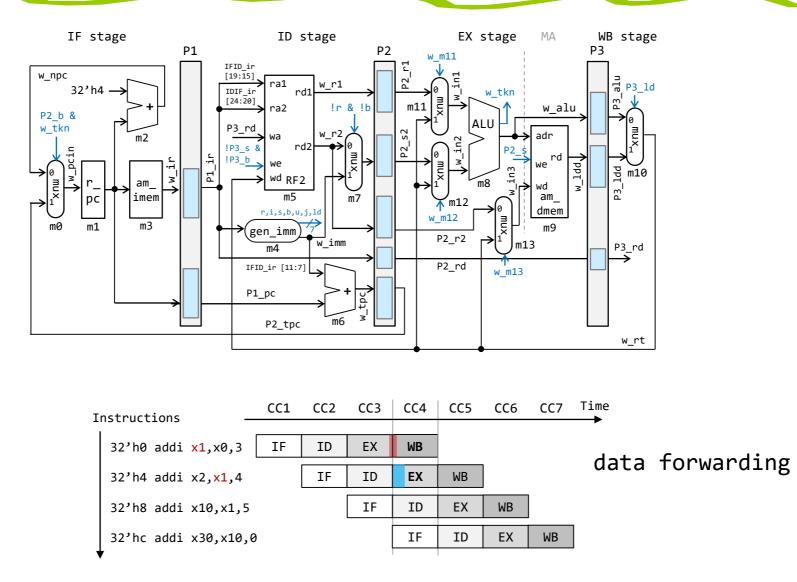
www.arch.cs.titech.ac.jp/lecture/CA/ Tue 13:30-15:10, 15:25-17:05 Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

吉瀬 謙二 情報工学系 Kenji Kise, Department of Computer Science kise _at_ c.titech.ac.jp 1

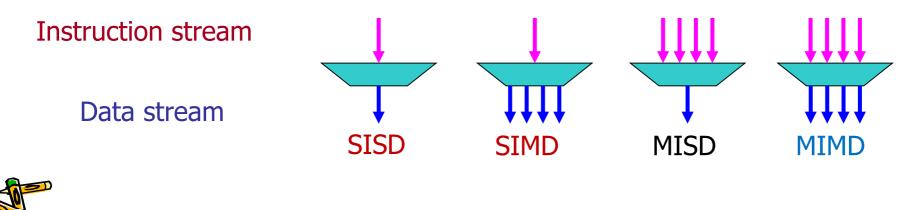
Superscalarと命令レベル並列性

- 複数のパイプラインを利用して IPC (instructions per cycle) を 1以上 に引き上げる、複数の命令を並列に実行
 - n-way スーパースカラ


n

Time (in clock cycles) CC 4 CC 5 CC 6 CC 1 CC 2 CC 1 CC 2 CC 3 CC 3

n .	Instruction fetch	Instruction decode	Execution	Data access	Write back				
	Instruction fetch	Instruction decode	Execution	Data access	Write back				
		Instruction fetch	Instruction decode	Execution	Data access	Write back	2	-way s	uperscalar
		Instruction fetch	Instruction decode	Execution	Data access	Write back			
			Instruction fetch	Instruction decode	Execution	Data access	Write back		
			Instruction fetch	Instruction decode	Execution	Data access	Write back		
				Instruction fetch	Instruction decode	Execution	Data access	Write back	
				Instruction fetch	Instruction decode	Execution	Data access	Write back	
									-



proc8: 4-stage pipelining processor

アーキテクチャの異なる視点による分類

- Flynnによる命令とデータの流れに注目した並列計算機の分類(1966年)
 - SISD (Single Instruction stream, Single Data stream)
 - SIMD (Single Instruction stream, Multiple Data stream)
 - MISD (Multiple Instruction stream, Single Data stream)
 - MIMD (Multiple Instruction stream, Multiple Data stream)

SIMD Variants and multicore

- Vector architectures
- SIMD extensions
- Graphics Processing Units (GPUs)
- SIMD variants exploit data-level parallelism
- Instruction-level parallelism in superscalar processors
 - window size
- Thread-level parallelism in multicore processors

SIMD extensions

- Media applications operate on data types narrower than the native word size
 - Example: disconnect carry chains to "partition" adder
- Implementations:
 - Intel MMX (1996)
 - Eight 8-bit integer ops or four 16-bit integer ops
 - Streaming SIMD Extensions (SSE) (1999)
 - Eight 16-bit integer ops
 - Four 32-bit integer/fp ops or two 64-bit integer/fp ops
 - Advanced Vector Extensions (AVX 2010)
 - Four 64-bit integer/fp ops
 - 256 bit vectors -> 512 -> 1024
 - Operands must be consecutive and aligned memory locations

Vector architecture

- Computers designed by Seymour Cray starting in the 1970s
- Basic idea:
 - Read sets of data elements into "vector registers"
 - Operate on those registers
 - Disperse the results back into memory

DAXPY (double precision a x X + Y)

```
void daxpy(int n, double a, double x[], double y[])
{
   for (int i = 0; i < n; i++) {
     y[i] = a*x[i] + y[i];
   }
}</pre>
```

DAXPY in MIPS Instructions

Example: DAXPY (double precision $a \times X + Y$)

	L.D	FO,a	•
	DADDIU	R4,Rx,#512	•
Loop:	L.D	F2,0(Rx)	•
	MUL.D	F2,F2,F0	•
	L.D	F4,0(Ry)	•
	ADD.D	F4,F2,F2	•
	S.D	F4,9(Ry)	•
	DADDIU	Rx,Rx,#8	•
	DADDIU	Ry,Ry,#8	•
	SUBBU	R20,R4,Rx	•
	BNEZ	R20,Loop	•

- ; load scalar a
- ; upper bound of what to load
- ; load X[i]
- ; a x X[i]
- ; load Y[i]
- ; a × X[i] + Y[i]
- ; store into Y[i]
- ; increment index to X
- ; increment index to Y
- ; compute bound
- ; check if done

Requires almost 600 MIPS operations

DAXPY in VMIPS (MIPS with Vector) Instructions

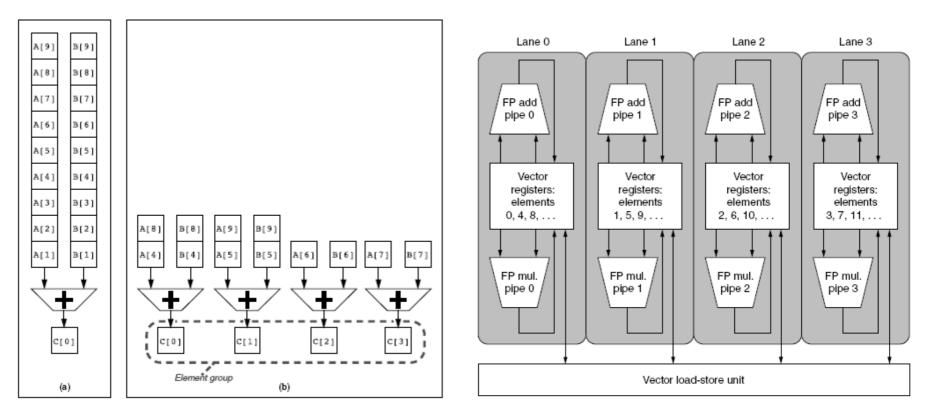
- ADDV.D : add two vectors
- ADDVS.D : add vector to a scalar
- LV/SV : vector load and vector store from address
- Example: DAXPY (double precision a*X+Y)

L.D	FO,a	; load scalar a
LV	V1,Rx	; load vector X
MULVS.D	V2,V1,F0	; vector-scalar multiply
LV	V3,Ry	; load vector Y
ADDV.D	V4,V2,V3	; add
SV	Ry,V4	; store the result

• Requires 6 instructions

Vector-vector add in RISC-V instructions

```
# vector-vector add routine of 32-bit integers
   # void vvaddint32(size_t n, const int*x, const int*y, int*z)
   # { for (size_t i=0; i<n; i++) { z[i]=x[i]+y[i]; } }</pre>
   #
   \# a0 = n, a1 = x, a2 = y, a3 = z
   # Non-vector instructions are indented
vvaddint32:
   vsetvli t0, a0, e32, ta, ma # Set vector length based on 32-bit vectors
   vle32.v v0, (a1) # Get first vector
     sub a0, a0, t0 # Decrement number done
     slli t0, t0, 2  # Multiply number done by 4 bytes
     add a1, a1, t0 # Bump pointer
   vle32.v v1, (a2) # Get second vector
     add a2, a2, t0 # Bump pointer
   vadd.vv v2, v0, v1 # Sum vectors
   vse32.v v2, (a3) # Store result
     add a3, a3, t0 # Bump pointer
     bnez a0, vvaddint32 # Loop back
     ret
                          # Finished
```



The basic structure of a vector architecture, VMIPS

- Eight 64-element vector registers
- All the functional units are vector functional units.

Multiple functional units to improve the performance

- (a) can complete one addition per cycle
- (b) can complete four addition per cycle
- The vector register storage is divided across the lanes

2023年度(令和5年)版

Ver. 2023-11-21a

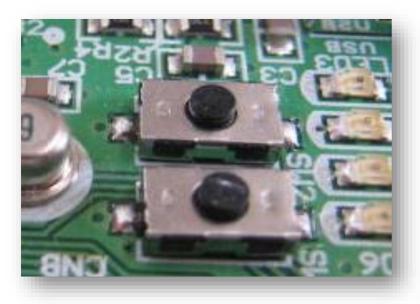
Course number: CSC.T363

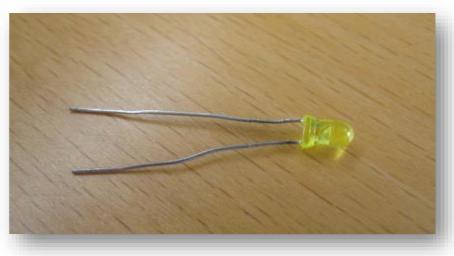
コンピュータアーキテクチャ Computer Architecture

入出力、バス Input/Output and Bus

www.arch.cs.titech.ac.jp/lecture/CA/ Tue 13:30-15:10, 15:25-17:05 Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

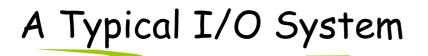

吉瀬 謙二 情報工学系 Kenji Kise, Department of Computer Science Kise _at_ c.titech.ac.jp 14

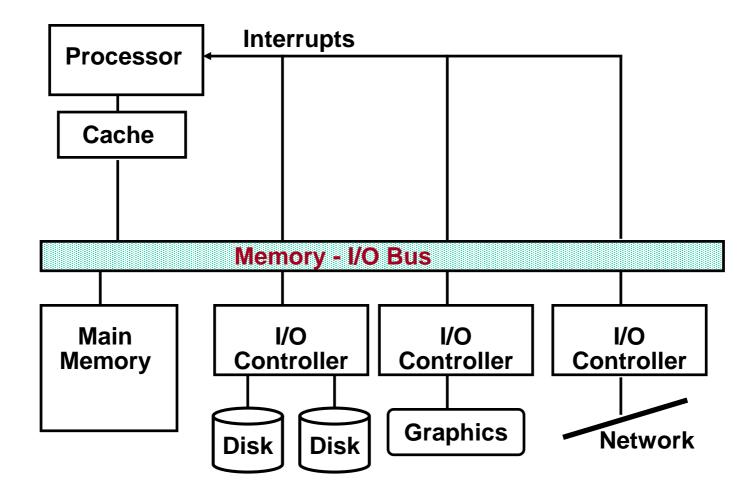


コンパイラ

Instruction Set Architecture (ISA), 命令セットアーキテクチャ インタフェース コンピュータ プロセッサ 入力 性能の評価 制御 記憶 データパス 出力

Input and Output Devices




Input and Output Devices

- I/O devices are diverse with respect to
 - Behavior input, output or storage
 - Partner human or machine
 - Data rate the peak rate at which data can be transferred between the I/O device and the main memory or CPU

Device	Behavior	Partner	Data rate (Mb/s)
Keyboard	input	human	0.0001
Mouse	input	human	0.0038
Laser printer	output	human	3.2000
Graphics display	output	human	800.0000-8000.0000
Network/LAN	input or output	machine	100.0000-1000.0000
Magnetic disk	storage	machine	240.0000-2560.0000

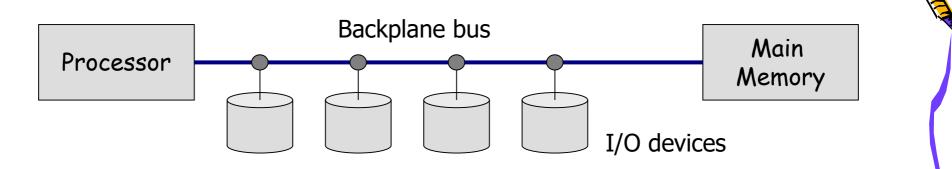
Bus, I/O System Interconnect

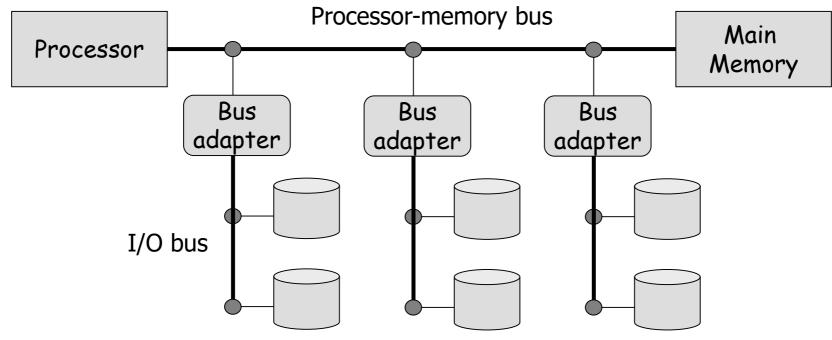
• A bus is a shared communication link

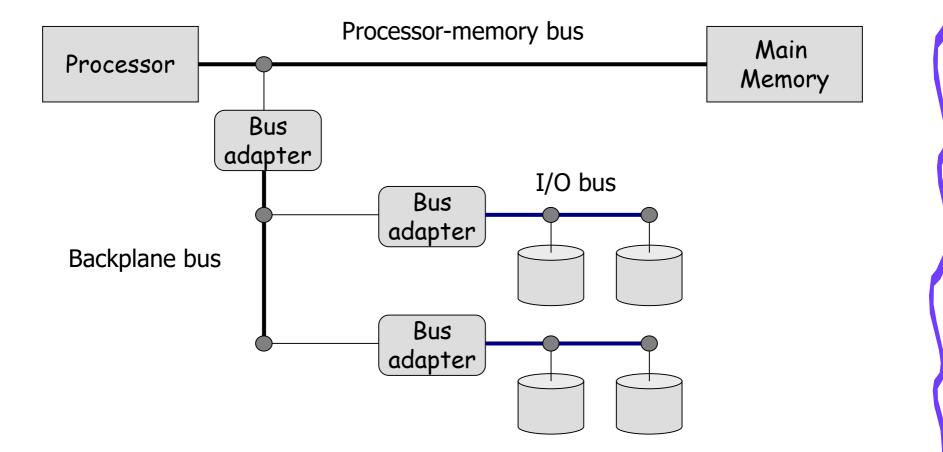
1bit data wire		
1bit control wire		
Bus		
CSC.T363 Comp	uter Architecture, Department of Computer Science, TOKYO TECH	

19

Bus, I/O System Interconnect

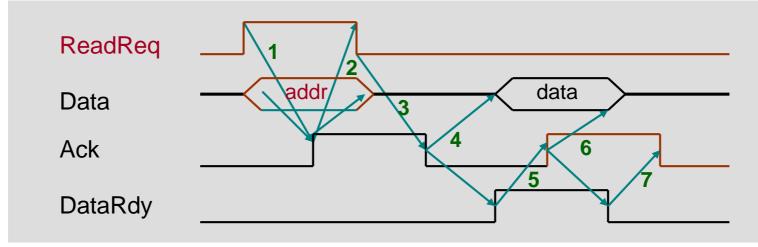

- A bus is a shared communication link (a single set of wires used to connect multiple subsystems)
 - Advantages
 - Low cost a single set of wires is shared in multiple ways
 - Versatile (多目的) new devices can be added easily and can be moved between computer systems that use the same bus standard
 - Disadvantages
 - Creates a communication bottleneck bus bandwidth limits the maximum I/O throughput
- The maximum bus speed is largely limited by
 - The length of the bus
 - The number of devices on the bus


Bus Characteristics


- Control lines
 - Signal requests and acknowledgments
 - Indicate what type of information is on the data lines
- Data lines
 - Data, addresses, and complex commands
- Bus transaction consists of
 - Master issuing the command (and address) request
 - Slave receiving (or sending) the data action
 - Defined by what the transaction does to memory
 - Input inputs data from the I/O device to the memory
 - Output outputs data from the memory to the I/O device

Types of Buses (3)

- Processor-memory bus
 - Short and high speed
 - Matched to the memory system to maximize the memory-processor bandwidth
 - Optimized for cache block transfers
- I/O bus (industry standard, e.g., SCSI, USB, Firewire)
 - Usually is lengthy and slower
 - Needs to accommodate a wide range of I/O devices
 - Connects to the processor-memory bus or backplane bus
- Backplane bus (industry standard, e.g., ATA, PCI Express)
 - The backplane is an interconnection structure within the chassis
 - Used as an intermediary bus connecting I/O busses to the processor-memory bus

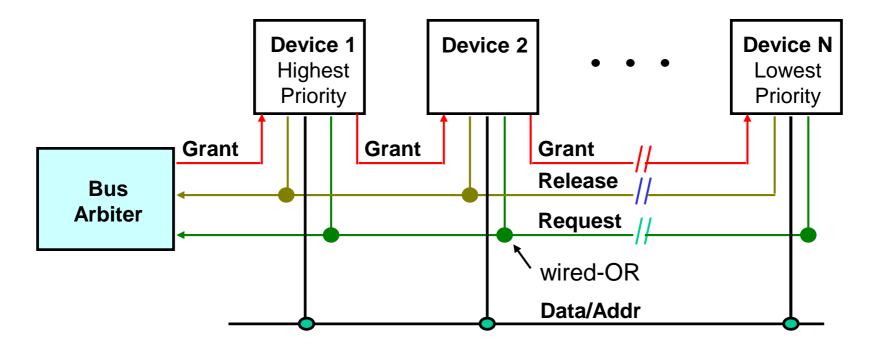

Synchronous(同期式), Asynchronous(非同期式) Buses

- Synchronous bus (e.g., processor-memory buses)
 - Includes a clock in the control lines and has a fixed protocol for communication that is relative to the clock
 - Advantage: involves very little logic and can run very fast
 - Disadvantages:
 - Every device communicating on the bus must use same clock rate
 - To avoid clock skew, they cannot be long if they are fast
- Asynchronous bus (e.g., I/O buses)
 - It is not clocked, so requires a handshaking protocol and additional control lines (ReadReq, Ack, DataRdy)
 - Advantages:
 - Can accommodate a wide range of devices and device speeds
 - Can be lengthened without worrying about clock skew or synchronization problems

• Disadvantage: slow

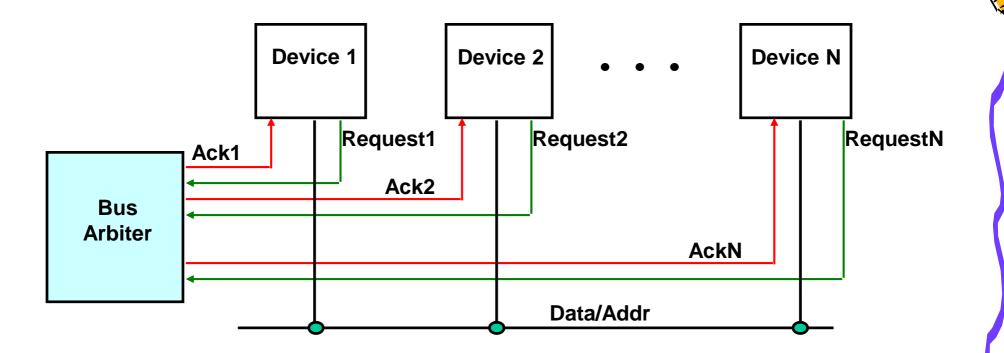
Asynchronous Bus Handshaking Protocol

An I/O device reads data from memory.

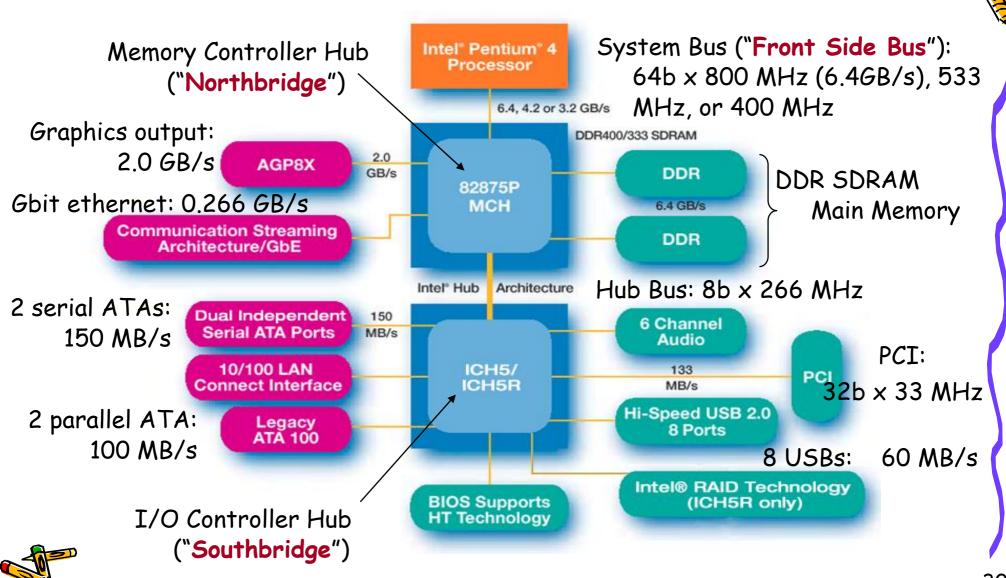

- 1. Memory sees **ReadReq**, reads **addr** from data lines, and raises **Ack**
- 2. I/O device sees **Ack** and releases the **ReadReq** and data lines
- 3. Memory sees **ReadReq** go low and drops Ack
- 4. When memory has data ready, it places it on data lines and raises **DataRdy**
- 5. I/O device sees **DataRdy**, reads the data from data lines, and raises **Ack**
- 6. Memory sees **Ack**, releases the data lines, and drops **DataRdy**
- 7. I/O device sees **DataRdy** go low and drops **Ack**

The Need for Bus Arbitration (調停)

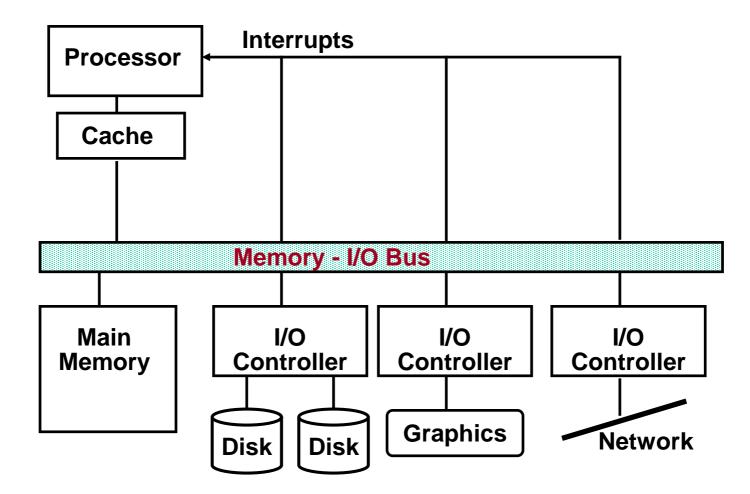
- Multiple devices may need to use the bus at the same time
- Bus arbitration schemes usually try to balance:
 - Bus priority the highest priority device should be serviced first
 - Fairness even the lowest priority device should never be completely locked out from the bus
- Bus arbitration schemes can be divided into four classes
 - Daisy chain arbitration
 - Centralized, parallel arbitration
 - Distributed arbitration by collision detection
 - device uses the bus when its not busy and if a collision happens (because some other device also decides to use the bus) then the device tries again later (Ethernet)


• Distributed arbitration by self-selection CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Daisy Chain Bus Arbitration (デイジーチェイン)


- Advantage: simple
- Disadvantages:
 - Cannot assure fairness a low-priority device may be locked out
 - Slower the daisy chain grant signal limits the bus speed

Centralized Parallel Arbitration (集中並列方式)



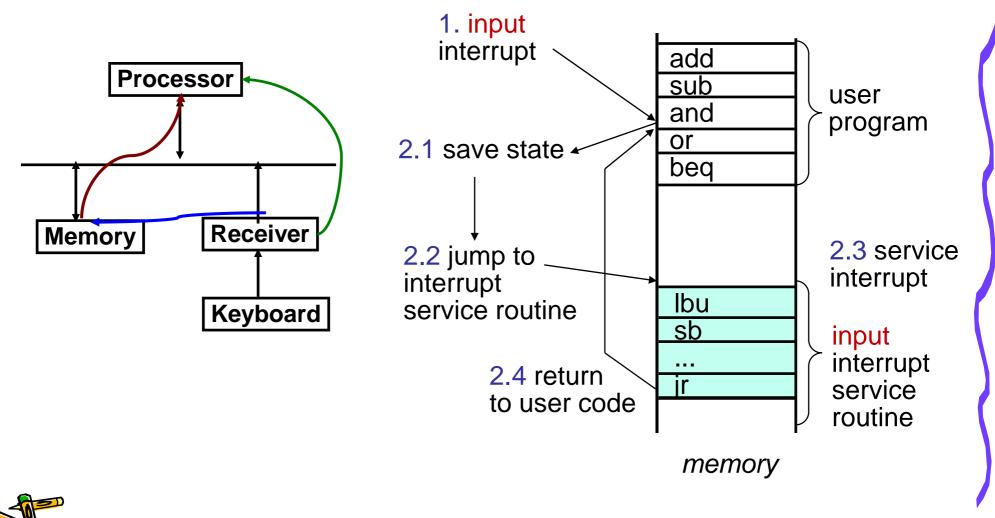
- Advantages: flexible, can assure fairness
- Disadvantages: more complicated arbiter hardware
- Used in essentially all processor-memory buses and in high-speed I/O buses

Example: The Pentium 4's Buses

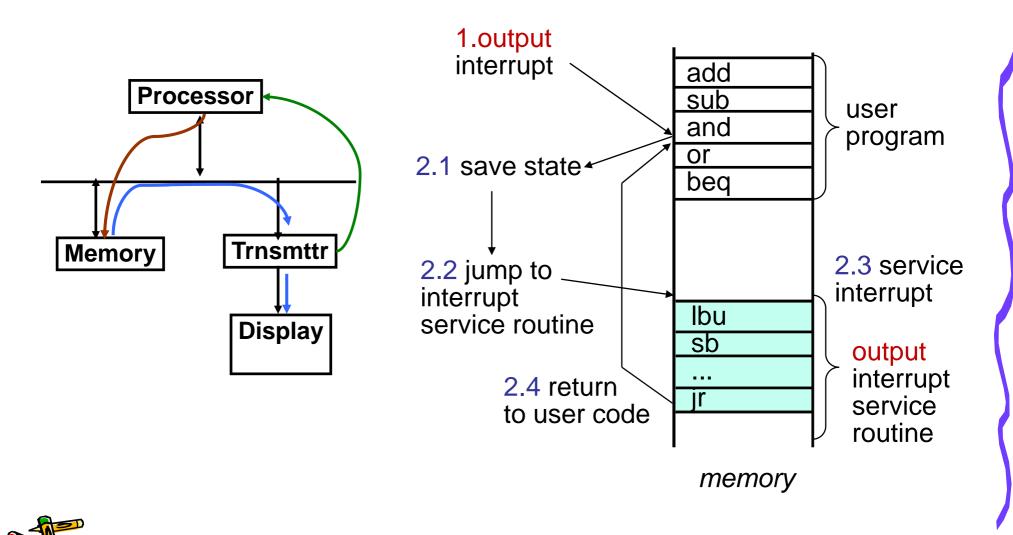
A Typical I/O System and interrupts

Communication of I/O Devices and Processor (1)

- How the processor directs the I/O devices
 - Memory-mapped I/O
 - Portions of the high-order memory address space are assigned to each I/O device
 - Read and writes to those memory addresses are interpreted
 - as commands to the I/O devices
 - Load/stores to the I/O address space can only be done by the OS
 - Special I/O instructions

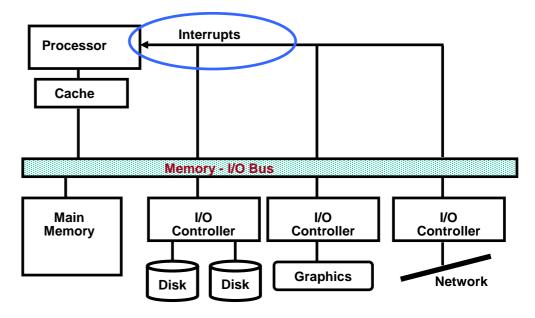


Communication of I/O Devices and Processor (2)


- How the I/O device communicates with the processor
 - Polling the processor periodically checks the status of an I/O device to determine its need for service
 - Processor is totally in control but does all the work
 - Can waste a lot of processor time due to speed differences
 - Interrupt-driven I/O the I/O device issues an interrupts to the processor to indicate that it needs attention

Interrupt-Driven Input

Interrupt-Driven Output


Interrupt-Driven I/O

- An I/O interrupt is asynchronous
 - Is not associated with any instruction so doesn't prevent any instruction from completing
 - You can pick your own convenient point to handle the interrupt
- With I/O interrupts
 - Need a way to identify the device generating the interrupt
 - Can have different urgencies (so may need to be prioritized)
- Advantages of using interrupts
 - No need to continuously poll for an I/O event; user program progress is only suspended during the actual transfer of I/O data to/from user memory space
- Disadvantage special hardware is needed to
 - Cause an interrupt (I/O device) and detect an interrupt and save the necessary information to resume normal processing after servicing the interrupt (processor)

Direct Memory Access (DMA)

- For high-bandwidth devices (like disks) interrupt-driven
 I/O would consume a lot of processor cycles
- DMA the I/O controller has the ability to transfer data directly to/from the memory without involving the processor
- There may be multiple DMA devices in one system

Direct Memory Access (DMA) how to?

- 1. The processor initiates the DMA transfer by supplying
 - 1. the I/O device address
 - 2. the operation to be performed
 - 3. the memory address destination/source
 - 4. the number of bytes to transfer.
- 2. The I/O DMA controller manages the entire transfer arbitrating for the bus
- 3. When the DMA transfer is complete, the I/O controller interrupts the processor to let it know that the transfer is complete

Cache Coherence

I/O and the Operating System

- The operating system acts as the interface between the I/O hardware and the program requesting I/O
 - To protect the shared I/O resources, the user program is not allowed to communicate directly with the I/O device
- Thus OS must be able to give commands to I/O devices, handle interrupts generated by I/O devices, provide fair access to the shared I/O resources, and schedule I/O requests to enhance system throughput
 - I/O interrupts result in a transfer of processor control to the supervisor (OS) process

