2023年度(令和5年)版

Ver. 2022-11-13a

Course number: CSC.T363

コンピュータアーキテクチャ Computer Architecture

11. 仮想記憶 (2), 信頼性 Virtual Memory (2), dependability

www.arch.cs.titech.ac.jp/lecture/CA/ Tue 13:30-15:10, 15:25-17:05 Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

吉瀬 謙二 情報工学系 Kenji Kise, Department of Computer Science Kise _at_ c.titech.ac.jp 1

Making Address Translation Fast

A TLB in the Memory Hierarchy

- A TLB miss is it a TLB miss or a page fault?
 - If the page is in main memory, then the TLB miss can be handled (in hardware or software) by loading the translation information from the page table into the TLB
 - Takes 100's of cycles to find and load the translation info into the TLB
 - If the page is not in main memory, then it's a true page fault
 - Takes 1,000,000's of cycles to service a page fault

A Typical Memory Hierarchy By taking advantage of the principle of locality Present much memory in the cheapest technology at the speed of fastest technology **On-Chip Components** Control Secondary Second Main Instr ache Memory Level Memory ω RegFile (Disk) Datapath Cache (DRAM) Cache Data (SRAM) Speed (%cycles): ½'s 1's 10's 100's 1,000's Size (bytes): 100's 10K's M's G's to T's K's highest Cost: lowest TLB: Translation Lookaside Buffer

The Hardware/Software Boundary

- What parts of the virtual to physical address translation is done by or assisted by the hardware?
 - Translation Lookaside Buffer (TLB) that caches the recent translations
 - TLB access time is part of the cache hit time
 - May cause an extra stage in the pipeline for TLB access
 - Page table storage, fault detection and updating
 - Page faults result in interrupts (precise) that are then handled by the OS
 - Hardware must support (i.e., update appropriately) Dirty and Reference bits (e.g., ~LRU) in the Page Tables

Q3 2022 Hard Drive Failure Rates

annualized failure rate (AFR)

Backblaze SSD Quarterly Failure Rates for Q2 2022

Reporting period: 4/1/22 thru 6/30/22 for drive models active as of 6/30/22

		Size	Drive	Drive	Drive	
MFG	Model	(GB)	Count	Days	Failures	AFR
Crucial	CT250MX500SSD1	250	272	20,002	0	-
Dell	DELLBOSS VD	480	351	29,066	0	-
Micron	MTFDDAV240TCB	240	89	8,084	1	4.52%
Seagate	ZA250CM10003	250	1,106	99,379	2	0.73%
Seagate	ZA500CM10003 (*)	500	3	42	0	-
Seagate	ZA2000CM10002	2000	3	271	0	-
Seagate	ZA250CM10002	250	559	50,477	4	2.89%
Seagate	ZA500CM10002	500	18	1,625	0	-
Seagate	ZA250NM1000 (*)	250	9	126	0	-
Seagate	SSD	300	106	9,541	0	-
WDC	WDS250G2B0A	250	42	3,781	0	-
			2,558	222,394	7	1.15%

(*) - New drive model in Q2 2022

🎄 Backblaze

https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/

Backblaze Hard Drives Quarterly Failure Rates for Q3 2022

Reporting period: 7/1/2022 through 9/30/2022 for drive models active as of 9/30/2022

MFG	Model	Drive Size	Drive Count	Avg. Age (months)	Drive Days	Drive Failures	AFR
HGST	HMS5C4040ALE640	4TB	3,731	74.0	341,509	3	0.32%
HGST	HMS5C4040BLE640	4TB	12,730	71.1	1,170,925	14	0.44%
HGST	HUH728080ALE600	8TB	1,119	53.6	103,354	8	2.83%
HGST	HUH728080ALE604	8TB	95	62.6	7,637	-	0.00%
HGST	HUH721212ALE600	12TB	2,605	35.9	239,644	3	0.46%
HGST	HUH721212ALE604	12TB	13,157	18.3	1,209,798	19	0.57%
HGST	HUH721212ALN604	12TB	10,784	41.8	992,989	27	0.99%
Seagate	ST4000DM000	OODMOOO 4TB 1		83.1	1,683,920	202	4.38%
Seagate	ST6000DX000	6TB	886	89.6	81,509	3	1.34%
Seagate	ST8000DM002	8TB	9,566	71.6	883,015	62	2.56%
Seagate	ST8000NM000A	8TB	79	11.2	26,974	-	0.00%
Seagate	ST8000NM0055	8TB	14,374	60.7	1,322,195	107	2.95%
Seagate	ST10000NM0086	10TB	1,174	58.6	108,372	9	3.03%
Seagate	ST12000NM0007	12TB	1,272	34.7	117,739	16	4.96%
Seagate	ST12000NM0008	12TB	19,910	30.1	1,837,021	124	2.46%
Seagate	ST12000NM001G	12TB	12,530	22.1	1,146,368	35	1.11%
Seagate	ST14000NM001G	14TB	10,737	19.9	987,184	40	1.48%
Seagate	ST14000NM0138	14TB	1,535	21.8	142,894	36	9.20%
Seagate	ST16000NM001G	16TB	20,402	10.7	1,696,759	29	0.62%
Seagate	ST16000NM002J	16TB	310	3.6	22,105	2	3.30%
Toshiba	MD04ABA400V	4TB	95	88.3	8,849	2	8.25%
Toshiba	MG07ACA14TA	14TB	38,203	23.1	3,514,384	117	1.22%
Toshiba	MG07ACA14TEY	14TB	537	18.4	47,742	2	1.53%
Toshiba	MG08ACA16TA	16TB	3,751	3.9	243,198	5	0.75%
Toshiba	MG08ACA16TE	16TB	5,942	11.7	546,805	22	1.47%
Toshiba	MG08ACA16TEY	16TB	4,244	11.9	385,715	12	1.14%
WDC	WUH721414ALE6L4	14TB	8,409	21.8	773,557	5	0.24%
WDC	WUH721816ALE6LO	16TB	2,702	11.8	248,428	-	0.00%
WDC	WUH721816ALE6L4	16TB	7,138	2.8	310,502	6	0.71%
			226,309		20,201,091	910	1.64%

https://www.backblaze.com/blog/backblaze-drive-stats-for-q3-2022/

h

エラー、フォールト、故障

- Fault (フォールト, 故障)
 - 誤りの原因
- Error (エラー, 誤り)
 - システム内の構成要素の正しくない出力
- Failure (障害)
 - システムが正常な動作をしない.コンポーネントやシステムが,期待した機能,サービス,結果から逸脱すること.

RAID: Redundant Array of Inexpensive Disks

- Arrays of small and inexpensive disks
 - Increase potential throughput by having many disk drives
 - Data is spread over multiple disk
 - Multiple accesses are made to several disks at a time
- **Reliability** is lower than a single disk
- But availability can be improved by adding redundant disks

- Multiple smaller disks as opposed to one big disk
 - Spreading the blocks over multiple disks striping means that multiple blocks can be accessed in parallel increasing the performance
 - 4 disk system gives four times the throughput of a 1 disk system
 - Same cost as one big disk assuming 4 small disks cost the same as one big disk
- No redundancy, so what if one disk fails?

RAID: Level 1 (Redundancy via Mirroring)

- Uses twice as many disks for redundancy so there are always two copies of the data
 - The number of redundant disks = the number of data disks so twice the cost of one big disk
 - writes have to be made to both sets of disks, so writes would be only 1/2 the performance of RAID 0
- What if one disk fails?
 - If a disk fails, the system just goes to the "mirror" for the data

RAID: Level 0+1 (RAID01, Striping with Mirroring) blk1 blk2 blk3 blk4 blk1 blk2 blk3 blk4 redundant (check) data

- Combines the best of RAID 0 and RAID 1, data is striped across four disks and mirrored to four disks
 - Four times the throughput (due to striping)
 - # redundant disks = # of data disks so twice the cost of one big disk
 - writes have to be made to both sets of disks, so writes would be only 1/2 the performance of RAID 0
- What if one disk fails?
 - If a disk fails, the system just goes to the "mirror" for the data

RAID: Level 3 (Bit/Byte-Interleaved Parity)

- Cost of higher availability is reduced to 1/N where N is the number of disks in a protection group
 - # redundant disks = 1 × # of protection groups
 - writes require writing the new data to the data disk as well as computing the parity, meaning reading the other disks, so that the parity disk can be updated
 - reads require reading all the operational data disks as well as the parity disk to calculate the missing data that was stored on the failed disk

RAID: Level 4 (Block-Interleaved Parity)

- Cost of higher availability still only 1/N but the parity is stored as blocks associated with sets of data blocks
 - Four times the throughput (striping)
 - # redundant disks = 1 × # of protection groups
 - Supports "small reads" and "small writes" (reads and writes that go to just one (or a few) data disk in a protection group)

Small Reads and Small Writes

• RAID 3

• RAID 4 small reads and small writes

Distributing Parity Blocks

• By distributing parity blocks to all disks, some small writes can be performed in parallel

one of these assigned as the block parity disk

- Cost of higher availability still only 1/N but the parity block can be located on any of the disks so there is no single bottleneck for writes
 - Still four times the throughput (striping)
 - # redundant disks = 1 × # of protection groups
 - Supports "small reads" and "small writes" (reads and writes that go to just one (or a few) data disk in a protection group)
 - Allows multiple simultaneous writes

2023年度(令和5年)版

Ver. 2023-11-13a

Course number: CSC.T363

コンピュータアーキテクチャ Computer Architecture

スーパースカラ Superscalar

www.arch.cs.titech.ac.jp/lecture/CA/ Tue 13:30-15:10, 15:25-17:05 Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

吉瀬 謙二 情報工学系 Kenji Kise, Department of Computer Science Kise _at_ c.titech.ac.jp 18

Superscalar スーパースカラと命令レベル並列性

- 複数のパイプラインを利用して IPC (instructions per cycle)を1以上 に引き上げる、複数の命令を並列に実行
 - n-way スーパースカラ

Time (in clock cycles) CC 4 CC 5 CC 6 CC 1 CC 2 CC 1 CC 2 CC 3 CC 3

n {		Instruction fetch	Instruction decode	Execution	Data access	Write back				
	Instruction fetch	Instruction decode	Execution	Data access	Write back					
			Instruction fetch	Instruction decode	Execution	Data access	Write back	2	-way s	uperscalar
			Instruction fetch	Instruction decode	Execution	Data access	Write back			
				Instruction fetch	Instruction decode	Execution	Data access	Write back		
				Instruction fetch	Instruction decode	Execution	Data access	Write back		
					Instruction fetch	Instruction decode	Execution	Data access	Write back	
)					Instruction fetch	Instruction decode	Execution	Data access	Write back	

If stage

MipsCore in-order SuperScalar 2011-12-02 17:00 ArchLab. TOKYO TECH