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A Typical Memory Hierarchy
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Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s

Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

❑ By taking advantage of the principle of locality

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer
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Magnetic Disk （磁気ディスク）

http://sougo057.aicomp.jp/0001.html
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Magnetic Disk （磁気ディスク）

• Purpose
• Long term, nonvolatile（不揮発性） storage

• Lowest level in the memory hierarchy
• slow, large, inexpensive

• General structure
• A rotating platter coated with a magnetic surface

• A moveable read/write head to access 
the information on the disk

• Typical numbers
• 1 to 4 platters per disk of 1” to 5.25” in diameter (3.5” dominate in 

2004)

• Rotational speeds of 5,400 to 15,000 RPM (rotation per minute)

• 10,000 to 50,000 tracks per surface
• cylinder - all the tracks under the head at a given point on all surfaces

• 100 to 500 sectors per track
• the smallest unit that can be read/written (typically 512B)

Platter
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Platters

Sectors

Tracks
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Disk Drives

To access data:
• seek time （シーク時間）:  position the head over the proper track

• rotational latency （回転待ち時間）:  wait for desired sector

• transfer time （転送時間）:  grab the data  (one or more sectors)

• Controller time（制御時間）: the overhead the disk controller 
imposes in performing a disk I/O access 
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Magnetic Disk Characteristic

• Disk read/write components
1. Seek time: position the head over the                                           

proper track (3 to 14 ms avg)
• due to locality of disk references                                                        

the actual average seek time may 
be only 25% to 33% of the advertised number

2. Rotational latency:  wait for the desired sector 
to rotate under the head (½ of 1/RPM converted to ms)
• 0.5/5400RPM  = 0.5/90 rotations per second = 5.6 ms
• 0.5/15000RPM = 0.5/250 rotations per second =  2.0 ms

3. Transfer time:  transfer a block of bits (one or more 
sectors) under the head to the disk controller’s cache (30 to 
80 MB/s are typical disk transfer rates)

4. Controller time:  the overhead the disk controller imposes in 
performing a disk I/O access (typically < .2 ms)
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• Disk latency is one average seek time plus the rotational 
latency.

• Disk bandwidth is the peak transfer time of formatted 
data from the media (not from the cache).

Disk Latency & Bandwidth Milestones

CDC Wren SG ST41 SG ST15 SG ST39 SG ST37

Speed (RPM) 3600 5400 7200 10000 15000

Year 1983 1990 1994 1998 2003

Capacity (Gbytes) 0.03 1.4 4.3 9.1 73.4

Diameter (inches) 5.25 5.25 3.5 3.0 2.5

Interface ST-412 SCSI SCSI SCSI SCSI

Bandwidth (MB/s) 0.6 4 9 24 86

Latency (msec) 48.3 17.1 12.7 8.8 5.7

Patterson, CACM Vol 47, #10, 2004
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Example of 32-bit memory space (4GB)

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112  = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

2GB Memory !
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Virtual Memory （仮想記憶）

• Use main memory as a “cache” for 
secondary memory
• Provides the ability to easily run 

programs larger than the size of 
physical memory

• Simplifies loading a program for 
execution by providing for code 
relocation (i.e., the code can be loaded 
anywhere in main memory)

• Allows efficient and safe sharing of 
memory among multiple programs

• Security, memory protection
• control memory access rights

Main memory

Secondary memory (disk)
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Virtual Memory

• What makes it work?  – again the Principle of 
Locality

• A program is likely to access a relatively small 
portion of its address space during any period 
of time
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Virtual Memory

• Each program is compiled into its own 
address space – a “virtual address (VA)”
space

• Physical address (PA) for the access of  
physical devices

• During run-time each 
virtual address, VA must be translated 
to a physical address, PA

Main memory

Secondary memory (disk)
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Virtual Memory

Main memory

(2GB)

Secondary memory (disk)

(1024GB)

VA for 4GB memory 
of program A

VA for 4GB memory 
of program B

VA for 4GB memory
of program C

Virtual address world Physical address world
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Two Programs Sharing Physical Memory

Program A’s page table (virtual address space)

main memory

◼ A program’s address space is divided into pages (all one 
fixed size, typical 4KB) or segments (variable sizes)
◼ The starting location of each page (either in main memory or in 

secondary memory) is contained in the program’s page table

Program B’s page table

4KB page

HDD
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Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31  30                          .  .  .                                             12  11          .  .  .          0

Page offsetPhysical page number

Physical Address (PA)
29                        .  .  .                                      12  11                            0

Translation

• So each memory request first requires an address 
translation from the virtual space to the physical space

◼ A virtual address is translated to a physical address by a 
combination of hardware and software

Assume 4KB page size
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Address Translation Mechanisms

Physical page
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Virtual Addressing, the hardware fix

• Thus it may take an extra memory access to translate a virtual 
address to a physical address

CPU
Core
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lation
Cache

Main

Memory

VA PA miss

hit

data

◼ This makes memory (cache) 
accesses very expensive
(if every access was really two
accesses)

◼ What’s the solution ?
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Virtual Addressing, the hardware fix

◼ The hardware fix is to use a Translation Lookaside 
Buffer (TLB) （アドレス変換バッファ）

◼ a small cache that keeps track of recently used 
address mappings to avoid having to do a page table
lookup
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Making Address Translation Fast

Physical page base addr
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Disk storage

Virtual page #
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(in physical memory)

1M entries
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words
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What kind of locality are we taking advantage of?
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Translation Lookaside Buffers (TLBs)

• Just like any other cache, the TLB can be organized as 
fully associative, set associative, or direct mapped

V    Virtual Page #          Physical Page #   

• TLB access time is typically smaller than cache access 
time (because TLBs are much smaller than caches)

• TLBs are typically not more than 128 to 256 entries even 
on high end machines
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A TLB in the Memory Hierarchy

• A TLB miss – is it a TLB miss  or a page fault ? 

• If the page is in main memory, then the TLB miss can be 
handled (in hardware or software) by loading the translation 
information from the page table into the TLB

• Takes 100’s of cycles to find and load the translation info into the TLB

• If the page is not in main memory, then it’s a true page fault
• Takes 1,000,000’s of cycles to service a page fault
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A TLB in the Memory Hierarchy

• page fault : page is not in physical memory

• TLB misses are much more frequent than true page faults
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Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions and 

1TLB for data

Both 4-way set associative

Both use ~LRU 

replacement                         

Both have 128 entries

TLB misses handled in 

hardware

2 TLBs for instructions and 2 

TLBs for data

Both L1 TLBs fully associative 

with ~LRU replacement

Both L2 TLBs are 4-way set 

associative with round-robin 

LRU

Both L1 TLBs have 40 entries

Both L2 TLBs have 512 entries

TBL misses handled in 

hardware



CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 24

TLB Page 

Table

Cache Possible?  Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/

Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not 

checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data

not in cache

Yes – page fault

Impossible – TLB translation not possible if

page is not present in memory

Impossible – data not allowed in cache if 

page is not in memory

TLB Event Combinations
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Why Not a Virtually Addressed Cache?

• A virtually addressed cache would only require address 
translation on cache misses

data
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◼ Two different virtual addresses can map to the same physical 

address (when processes are sharing data), 

◼ Two different cache entries hold data for the same physical address 
– synonyms （別名）

◼ Must update all cache entries with the same physical address or 
the memory becomes inconsistent
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The Hardware/Software Boundary

• What parts of the virtual to physical address translation 
is done by or assisted by the hardware?

• Translation Lookaside Buffer (TLB) that caches the recent 
translations

• TLB access time is part of the cache hit time

• May cause an extra stage in the pipeline for TLB access

• Page table storage, fault detection and updating

• Page faults result in interrupts (precise) that are then 
handled by the OS

• Hardware must support (i.e., update appropriately) Dirty and 
Reference bits (e.g., ~LRU) in the Page Tables
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Q3 2022 Hard Drive Failure Rates

annualized failure rate (AFR)

https://www.backblaze.com/blog/backblaze-drive-stats-for-q3-2022/

https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/



CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 28

A Typical Memory Hierarchy
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Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s

Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

❑ By taking advantage of the principle of locality

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer
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Superscalar スーパースカラと命令レベル並列性

• 複数のパイプラインを利用して IPC (instructions per cycle) を 1以上
に引き上げる，複数の命令を並列に実行

• n-way スーパースカラ

n

2-way superscalar
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スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）
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スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）
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スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）
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MipsCore in-order SuperScalar 2011-12-02  17:00     ArchLab. TOKYO TECH

スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）


