
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

コンピュータアーキテクチャ
Computer Architecture

10. 仮想記憶
Virtual Memory

Ver. 2022-11-07a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2023年度（令和5年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 3

Magnetic Disk （磁気ディスク）

http://sougo057.aicomp.jp/0001.html

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 4

Magnetic Disk （磁気ディスク）

• Purpose
• Long term, nonvolatile（不揮発性） storage

• Lowest level in the memory hierarchy
• slow, large, inexpensive

• General structure
• A rotating platter coated with a magnetic surface

• A moveable read/write head to access
the information on the disk

• Typical numbers
• 1 to 4 platters per disk of 1” to 5.25” in diameter (3.5” dominate in

2004)

• Rotational speeds of 5,400 to 15,000 RPM (rotation per minute)

• 10,000 to 50,000 tracks per surface
• cylinder - all the tracks under the head at a given point on all surfaces

• 100 to 500 sectors per track
• the smallest unit that can be read/written (typically 512B)

Platter

Track

Platters

Sectors

Tracks

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

Disk Drives

To access data:
• seek time （シーク時間）: position the head over the proper track

• rotational latency （回転待ち時間）: wait for desired sector

• transfer time （転送時間）: grab the data (one or more sectors)

• Controller time（制御時間）: the overhead the disk controller
imposes in performing a disk I/O access

Platter

Track

Platters

Sectors

TracksSector

Track

Cylinder

Head
Platter

Controller
+

Cache

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Magnetic Disk Characteristic

• Disk read/write components
1. Seek time: position the head over the

proper track (3 to 14 ms avg)
• due to locality of disk references

the actual average seek time may
be only 25% to 33% of the advertised number

2. Rotational latency: wait for the desired sector
to rotate under the head (½ of 1/RPM converted to ms)
• 0.5/5400RPM = 0.5/90 rotations per second = 5.6 ms
• 0.5/15000RPM = 0.5/250 rotations per second = 2.0 ms

3. Transfer time: transfer a block of bits (one or more
sectors) under the head to the disk controller’s cache (30 to
80 MB/s are typical disk transfer rates)

4. Controller time: the overhead the disk controller imposes in
performing a disk I/O access (typically < .2 ms)

Sector

Track

Cylinder

Head
Platter

Controller
+

Cache

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

• Disk latency is one average seek time plus the rotational
latency.

• Disk bandwidth is the peak transfer time of formatted
data from the media (not from the cache).

Disk Latency & Bandwidth Milestones

CDC Wren SG ST41 SG ST15 SG ST39 SG ST37

Speed (RPM) 3600 5400 7200 10000 15000

Year 1983 1990 1994 1998 2003

Capacity (Gbytes) 0.03 1.4 4.3 9.1 73.4

Diameter (inches) 5.25 5.25 3.5 3.0 2.5

Interface ST-412 SCSI SCSI SCSI SCSI

Bandwidth (MB/s) 0.6 4 9 24 86

Latency (msec) 48.3 17.1 12.7 8.8 5.7

Patterson, CACM Vol 47, #10, 2004

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

Example of 32-bit memory space (4GB)

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112 = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

2GB Memory !

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9

Virtual Memory （仮想記憶）

• Use main memory as a “cache” for
secondary memory
• Provides the ability to easily run

programs larger than the size of
physical memory

• Simplifies loading a program for
execution by providing for code
relocation (i.e., the code can be loaded
anywhere in main memory)

• Allows efficient and safe sharing of
memory among multiple programs

• Security, memory protection
• control memory access rights

Main memory

Secondary memory (disk)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 10

Virtual Memory

• What makes it work? – again the Principle of
Locality

• A program is likely to access a relatively small
portion of its address space during any period
of time

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

Virtual Memory

• Each program is compiled into its own
address space – a “virtual address (VA)”
space

• Physical address (PA) for the access of
physical devices

• During run-time each
virtual address, VA must be translated
to a physical address, PA

Main memory

Secondary memory (disk)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 12

Virtual Memory

Main memory

(2GB)

Secondary memory (disk)

(1024GB)

VA for 4GB memory
of program A

VA for 4GB memory
of program B

VA for 4GB memory
of program C

Virtual address world Physical address world

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

Two Programs Sharing Physical Memory

Program A’s page table (virtual address space)

main memory

◼ A program’s address space is divided into pages (all one
fixed size, typical 4KB) or segments (variable sizes)
◼ The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table

Program B’s page table

4KB page

HDD

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

• So each memory request first requires an address
translation from the virtual space to the physical space

◼ A virtual address is translated to a physical address by a
combination of hardware and software

Assume 4KB page size

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

Address Translation Mechanisms

Physical page

base addr

Main memory

Disk storage

Virtual page #

V
1

1

1

1

1

1

0

1

0

1

0

Page Table in main memory

Offset

Physical page # Offset

page fault :
page is not in the main memoryVA

PA

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 16

Virtual Addressing, the hardware fix

• Thus it may take an extra memory access to translate a virtual
address to a physical address

CPU
Core

Trans-

lation
Cache

Main

Memory

VA PA miss

hit

data

◼ This makes memory (cache)
accesses very expensive
(if every access was really two
accesses)

◼ What’s the solution ?

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 17

Virtual Addressing, the hardware fix

◼ The hardware fix is to use a Translation Lookaside
Buffer (TLB) （アドレス変換バッファ）

◼ a small cache that keeps track of recently used
address mappings to avoid having to do a page table
lookup

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 18

Making Address Translation Fast

Physical page base addr

Main memory

Disk storage

Virtual page #

V
1

1

1

1

1

1

0

1

0

1

0

1

1

1

0

1

Tag Physical page base addrV

TLB (Translation Lookaside Buffer)

Page Table

(in physical memory)

1M entries

128 entries

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 19

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 20

Translation Lookaside Buffers (TLBs)

• Just like any other cache, the TLB can be organized as
fully associative, set associative, or direct mapped

V Virtual Page # Physical Page #

• TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)

• TLBs are typically not more than 128 to 256 entries even
on high end machines

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 21

A TLB in the Memory Hierarchy

• A TLB miss – is it a TLB miss or a page fault ?

• If the page is in main memory, then the TLB miss can be
handled (in hardware or software) by loading the translation
information from the page table into the TLB

• Takes 100’s of cycles to find and load the translation info into the TLB

• If the page is not in main memory, then it’s a true page fault
• Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Translation

(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 22

A TLB in the Memory Hierarchy

• page fault : page is not in physical memory

• TLB misses are much more frequent than true page faults

CPU
Core

TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Translation

(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 23

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions and

1TLB for data

Both 4-way set associative

Both use ~LRU

replacement

Both have 128 entries

TLB misses handled in

hardware

2 TLBs for instructions and 2

TLBs for data

Both L1 TLBs fully associative

with ~LRU replacement

Both L2 TLBs are 4-way set

associative with round-robin

LRU

Both L1 TLBs have 40 entries

Both L2 TLBs have 512 entries

TBL misses handled in

hardware

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 24

TLB Page

Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/

Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not

checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data

not in cache

Yes – page fault

Impossible – TLB translation not possible if

page is not present in memory

Impossible – data not allowed in cache if

page is not in memory

TLB Event Combinations

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 25

Why Not a Virtually Addressed Cache?

• A virtually addressed cache would only require address
translation on cache misses

data

CPU
Trans-

lation

Cache

Main

Memory

VA

hit

PA

but
◼ Two different virtual addresses can map to the same physical

address (when processes are sharing data),

◼ Two different cache entries hold data for the same physical address
– synonyms （別名）

◼ Must update all cache entries with the same physical address or
the memory becomes inconsistent

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 26

The Hardware/Software Boundary

• What parts of the virtual to physical address translation
is done by or assisted by the hardware?

• Translation Lookaside Buffer (TLB) that caches the recent
translations

• TLB access time is part of the cache hit time

• May cause an extra stage in the pipeline for TLB access

• Page table storage, fault detection and updating

• Page faults result in interrupts (precise) that are then
handled by the OS

• Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 27

Q3 2022 Hard Drive Failure Rates

annualized failure rate (AFR)

https://www.backblaze.com/blog/backblaze-drive-stats-for-q3-2022/

https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 28

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 29

コンピュータアーキテクチャ
Computer Architecture

スーパースカラ
Superscalar

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

Ver. 2023-11-08a
2023年度（令和5年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 30

Superscalar スーパースカラと命令レベル並列性

• 複数のパイプラインを利用して IPC (instructions per cycle) を 1以上
に引き上げる，複数の命令を並列に実行

• n-way スーパースカラ

n

2-way superscalar

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 31

スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 32

スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 33

スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 34
MipsCore in-order SuperScalar 2011-12-02 17:00 ArchLab. TOKYO TECH

スーパースカラプロセッサ（MIPSインタリーブ命令メモリ版）

