
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

コンピュータアーキテクチャ
Computer Architecture

5. キャッシュ：セットアソシアティブ方式 (1)
Caches: Set-Associative (1)

Ver. 2023-10-16a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2023年度（令和5年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

参考

• Latency Numbers Programmer Should Know
• https://www.youtube.com/watch?v=FqR5vESuKe0

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 3

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 4

Sources of Cache Misses

Compulsory (初期参照ミス，cold start or process migration,
first reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it

If you are going to run “millions” of instruction, compulsory
misses are insignificant

Conflict (競合性ミス，collision):

Multiple memory locations mapped to the same cache location

Solution 1: increase cache size

Solution 2: increase associativity

Capacity (容量性ミス):

Cache cannot contain all blocks accessed by the program

Solution: increase cache size

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

Reducing Cache Miss Rates, Associativity

Allow more flexible block placement

In a direct mapped cache a memory block maps to exactly one

cache block

At the other extreme, could allow a memory block to be mapped

to any cache block – fully associative cache

A compromise is to divide the cache into sets each of which

consists of n “ways” (n-way set associative).

A memory block maps to a unique set and can be placed in

any way of that set (so there are n choices)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Cache Associativity

本棚

机

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

Caching: Direct mapped (First Example)

00

01

10

11

Cache

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits –
the index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

Set Associative Cache Example

0

Cache

Tag Data

Q: Is it there?

Compare all the cache
tags in the set to the high
order 3 memory address bits
to tell if the memory block is
in the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0
1

Way

0

1

Main Memory

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9

0 4 0 4

0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string

0 4 0 4 0 4 0 4
miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)

01 4
00 Mem(0)

01
4

01 Mem(4)
000

01 Mem(4)
000

◼ Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

◼ 8 requests, 8 misses

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 10

0 4 0 4

Another Reference String Mapping

Consider the main memory word reference string

0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

◼ Solves the ping pong effect in a direct mapped cache due to conflict
misses

◼ 8 requests, 2 misses

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

Four-Way Set Associative Cache

28 = 256 sets each with four ways (each with one block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit
Data

32

4x1 select

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 12

8

Index

Data (4 word)Index TagValid
0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

Range of Set Associative Caches

For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

Costs of Set Associative Caches

N-way set associative cache costs
N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.

When a miss occurs,
which way’s block do we pick for replacement ?
Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time

Must have hardware to keep track of when each way’s block was
used

For 2-way set associative, takes one bit per set→
set the bit when a block is referenced
(and reset the other way’s bit)

Random

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 16

Handling Cache Hits (Miss is the next issue)

• Read hits (I$ and D$)

• this is what we want!

• Write hits (D$ only)

• allow cache and memory to be inconsistent

• write the data only into the cache block (write-back)

• need a dirty bit for each data cache block to tell if it needs to
be written back to memory when it is evicted

• require the cache and memory to be consistent

• always write the data into both the cache block and the next
level in the memory hierarchy (write-through) so don’t need a
dirty bit

• writes run at the speed of the next level in the memory
hierarchy – so slow! – or can use a write buffer, so only have to
stall if the write buffer is full

Lower Level
Memory

Upper Level
Memory

Block X

Block Y

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 17

Write Buffer for Write-Through Caching

• Write buffer between the cache and main memory
• Processor: writes data into the cache and the write buffer
• Memory controller: writes contents of the write buffer to

memory

• The write buffer is just a FIFO
• Typical number of entries: 4
• Works fine if store frequency is low

• Memory system designer’s nightmare, Write buffer
saturation
• One solution is to use a write-back cache; another is to use an

L2 cache

Processor
Cache

write buffer

DRAM

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 18

Handling Cache Misses

• Read misses (I$ and D$)
• stall the entire pipeline, fetch the block from the next level in

the memory hierarchy, install it in the cache and send the
requested word to the processor, then let the pipeline resume

• Write misses (D$ only)
• Write allocate

• (a) write the word into the cache updating both the tag and data,
no need to check for cache hit, no need to stall

• (b) stall the pipeline, fetch the block from next level in the
memory hierarchy, install it in the cache, write the word from the
processor to the cache, then let the pipeline resume

• No-write allocate – skip the cache write and just write the
word to the write buffer (and eventually to the next memory
level), no need to stall if the write buffer isn’t full;
must invalidate the cache block since it will be inconsistent

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 19

Benefits of Set Associative Caches

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

The choice of direct mapped or set associative depends on the cost of
a miss versus the cost of implementation

Data from Hennessy & Patterson,
Computer Architecture, 2003

◼ Largest gains are in going from direct mapped to 2-way

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 20

ルックアップテーブル (Lookup Table, LUT)

0

1

0

1

0

1

bc

r1

r2

r3

r4

0

1

0

1

0

1

bc

r5

r6

r7

r8

0

1

a

d

LUT1 LUT2

2個の2入力のLUTで3入力のLUTを構成

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 21

Xilinx 7 Series FPGA Configuration Logic Block (CLB)

Slices = SLICEL + SLICEM
Distributed RAM (bit) = SLICEM * 256

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 22

Xilinx 7 Series Configuration Logic Block (CLB)

SLICELSLICEM

LUT

LUT

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 23

Distributed RAM

module m_RAM64X1S (clk, a, d, we, dout);
input wire clk;
input wire [5:0] a;
input wire d, we;
output wire dout;

reg [0:0] mem [0:63];
assign dout = mem[a];
always @(posedge clk) if(we) mem[a] <= d;

endmodule LUTRAM = 1

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 24

Distributed RAM

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 25

Distributed RAM

module m_RAM32M_Q (clk, a1, a2, a3, a4, d, we, dout1, dout2, dout3, dout4);
input wire clk;
input wire [4:0] a1, a2, a3, a4;
input wire [1:0] d;
input wire we;
output wire [1:0] dout1, dout2, dout3, dout4;

reg [1:0] mem [0:31];
assign dout1 = mem[a1];
assign dout2 = mem[a2];
assign dout3 = mem[a3];
assign dout4 = mem[a4];
always @(posedge clk) if(we) mem[a1] <= d;

endmodule

LUTRAM = 4

