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参考

• Latency Numbers Programmer Should Know
• https://www.youtube.com/watch?v=FqR5vESuKe0
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A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s

Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

❑ By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer
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Sources of Cache Misses

Compulsory (初期参照ミス，cold start or process migration, 
first reference):

First access to a block, “cold” fact of life, not a whole lot you 
can do about it

If you are going to run “millions” of instruction, compulsory 
misses are insignificant

Conflict (競合性ミス，collision):

Multiple memory locations mapped to the same cache location

Solution 1: increase cache size

Solution 2: increase associativity

Capacity (容量性ミス):

Cache cannot contain all blocks accessed by the program

Solution: increase cache size 



CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

Reducing Cache Miss Rates, Associativity

Allow more flexible block placement

In a direct mapped cache a memory block maps to exactly one 

cache block

At the other extreme, could allow a memory block to be mapped 

to any cache block – fully associative cache

A compromise is to divide the cache into sets each of which 

consists of n “ways” (n-way set associative).  

A memory block maps to a unique set and can be placed in 

any way of that set (so there are n choices)
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Cache Associativity
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Caching: Direct mapped (First Example)
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Q1: Is it there?

Compare the cache tag
to the high order 2 
memory address bits
to tell if the memory 
block is in the cache

Valid
Two low order bits 
define the byte in the 
word (32-b words)

Q2: How do we find it?

Use next 2 low order 
memory address bits –
the index – to determine 
which cache block

(block address) modulo (# of blocks in the cache)

Index
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Set Associative Cache Example
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0 4 0 4

0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string

0   4   0   4   0   4   0   4
miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4

00    Mem(0)

01 4
00    Mem(0)

01
4

01    Mem(4)
000

01    Mem(4)
000

◼ Ping pong effect due to conflict misses - two memory 
locations that map into the same cache block

◼ 8 requests, 8 misses
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0 4 0 4

Another Reference String Mapping

Consider the main memory word reference string

0   4   0   4   0   4   0   4

miss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

◼ Solves the ping pong effect in a direct mapped cache due to conflict 
misses

◼ 8 requests, 2 misses
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Four-Way Set Associative Cache

28 = 256 sets each with four ways (each with one block)
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8
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Multiword Block Direct Mapped Cache

• Four  words/block, cache size = 1K words
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words
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Range of Set Associative Caches

For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block
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Costs of Set Associative Caches

N-way set associative cache costs
N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.   

When a miss occurs, 
which way’s block do we pick for replacement ?
Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time

Must have hardware to keep track of when each way’s block was 
used 

For 2-way set associative, takes one bit per set→
set the bit when a block is referenced 
(and reset the other way’s bit)

Random
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Handling Cache Hits (Miss is the next issue)

• Read hits (I$ and D$)

• this is what we want!

• Write hits (D$ only)

• allow cache and memory to be inconsistent

• write the data only into the cache block (write-back)

• need a dirty bit for each data cache block to tell if it needs to 
be written back to memory when it is evicted

• require the cache and memory to be consistent

• always write the data into both the cache block and the next 
level in the memory hierarchy (write-through) so don’t need a 
dirty bit

• writes run at the speed of the next level in the memory 
hierarchy – so slow! – or can use a write buffer, so only have to 
stall if the write buffer is full

Lower Level
Memory

Upper Level
Memory

Block X

Block Y
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Write Buffer for Write-Through Caching

• Write buffer between the cache and main memory
• Processor: writes data into the cache and the write buffer
• Memory controller:  writes contents of the write buffer to 

memory

• The write buffer is just a FIFO
• Typical number of entries: 4
• Works fine if store frequency is low

• Memory system designer’s nightmare, Write buffer 
saturation
• One solution is to use a write-back cache; another is to use an 

L2 cache

Processor
Cache

write buffer

DRAM
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Handling Cache Misses

• Read misses (I$ and D$)
• stall the entire pipeline, fetch the block from the next level in 

the memory hierarchy, install it in the cache and send the 
requested word to the processor, then let the pipeline resume

• Write misses (D$ only)
• Write allocate

• (a) write the word into the cache updating both the tag and data, 
no need to check for cache hit, no need to stall

• (b) stall the pipeline, fetch the block from next level in the 
memory hierarchy, install it in the cache, write the word from the 
processor to the cache, then let the pipeline resume

• No-write allocate – skip the cache write and just write the 
word to the write buffer (and eventually to the next memory 
level), no need to stall if the write buffer isn’t full; 
must invalidate the cache block since it will be inconsistent
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Benefits of Set Associative Caches
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The choice of direct mapped or set associative depends on the cost of 
a miss versus the cost of implementation

Data from Hennessy & Patterson, 
Computer Architecture, 2003

◼ Largest gains are in going from direct mapped to 2-way
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ルックアップテーブル (Lookup Table, LUT)

0

1

0

1

0

1

bc

r1

r2

r3

r4

0

1

0

1

0

1

bc

r5

r6

r7

r8

0

1

a

d

LUT1 LUT2

2個の2入力のLUTで3入力のLUTを構成
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Xilinx 7 Series FPGA Configuration Logic Block (CLB)

Slices = SLICEL + SLICEM
Distributed RAM (bit) = SLICEM * 256
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Xilinx 7 Series Configuration Logic Block (CLB)

SLICELSLICEM

LUT

LUT
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Distributed RAM

module m_RAM64X1S (clk, a, d, we, dout);
input wire clk;
input wire [5:0] a;
input wire d, we;
output wire dout;

reg [0:0] mem [0:63];
assign dout = mem[a];
always @(posedge clk) if(we) mem[a] <= d; 

endmodule LUTRAM = 1
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Distributed RAM
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Distributed RAM

module m_RAM32M_Q (clk, a1, a2, a3, a4, d, we, dout1, dout2, dout3, dout4);
input wire clk;
input wire [4:0] a1, a2, a3, a4;
input wire [1:0] d;
input wire we;
output wire [1:0] dout1, dout2, dout3, dout4;

reg [1:0] mem [0:31];
assign dout1 = mem[a1];
assign dout2 = mem[a2];
assign dout3 = mem[a3];
assign dout4 = mem[a4];
always @(posedge clk) if(we) mem[a1] <= d; 

endmodule

LUTRAM = 4


