
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

コンピュータアーキテクチャ
Computer Architecture

4. キャッシュ：ダイレクトマップ方式
Caches: Direct-Mapped

Ver. 2023-10-12a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2023年度（令和5年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 3

パレートの法則

• Vilfredo Federico Damaso Pareto

• イタリアの経済学者(1948 – 1923)

• パレートの法則

• 全体の数値の大部分は，全体を構成するうちの一部の要素が生み
出している

• 80:20の法則

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 4

The Memory Hierarchy: Why Does it Work?

• Temporal Locality (時間的局所性，Locality in Time):

 Keep most recently accessed data items closer to the
processor

• Spatial Locality (空間的局所性，Locality in Space):

 Move blocks consisting of contiguous words to the upper
levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

Cache

• Two questions to answer (in hardware):

• Q1: How do we know if a data item is in the cache?

• Q2: If it is, how do we find it?

• Direct mapped

• For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

• Address mapping:
(block address) modulo (# of blocks in the cache)

• First, consider block sizes of one word

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Caching: A Simple First Example

00

01

10

11

Cache

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits –
the index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

Example Behavior of Direct Mapped Cache

0 1 2 3

4 3 4 15

• Consider the main memory word reference string (word
addresses) 0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all blocks initially marked as not valid

◼ 8 requests, 6 misses

Tag

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9

0 4 0 4

0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string

0 4 0 4 0 4 0 4
miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)

01 4
00 Mem(0)

01
4

01 Mem(4)
000

01 Mem(4)
000

◼ Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

◼ 8 requests, 8 misses

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 10

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

8

Index

Data (4 word)Index TagValid
0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 12

Taking Advantage of Spatial Locality

0

• Let cache block hold more than one word

0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)
01 5 4

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

miss

11 15 14

◼ 8 requests, 4 misses

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

Handling Cache Hits (Miss is the next issue)

• Read hits (I$ and D$)

• this is what we want!

• Write hits (D$ only)

• allow cache and memory to be inconsistent

• write the data only into the cache block (write-back)

• need a dirty bit for each data cache block to tell if it needs to
be written back to memory when it is evicted

• require the cache and memory to be consistent

• always write the data into both the cache block and the next
level in the memory hierarchy (write-through) so don’t need a
dirty bit

• writes run at the speed of the next level in the memory
hierarchy – so slow! – or can use a write buffer, so only have to
stall if the write buffer is full

Lower Level
Memory

Upper Level
Memory

Block X

Block Y

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

Write Buffer for Write-Through Caching

• Write buffer between the cache and main memory
• Processor: writes data into the cache and the write buffer
• Memory controller: writes contents of the write buffer to

memory

• The write buffer is just a FIFO
• Typical number of entries: 4
• Works fine if store frequency is low

• Memory system designer’s nightmare, Write buffer
saturation
• One solution is to use a write-back cache; another is to use an

L2 cache

Processor
Cache

write buffer

DRAM

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

Handling Cache Misses

• Read misses (I$ and D$)
• stall the entire pipeline, fetch the block from the next level in

the memory hierarchy, install it in the cache and send the
requested word to the processor, then let the pipeline resume

• Write misses (D$ only)
• Write allocate

• (a) write the word into the cache updating both the tag and data,
no need to check for cache hit, no need to stall

• (b) stall the pipeline, fetch the block from next level in the
memory hierarchy, install it in the cache, write the word from the
processor to the cache, then let the pipeline resume

• No-write allocate – skip the cache write and just write the
word to the write buffer (and eventually to the next memory
level), no need to stall if the write buffer isn’t full;
must invalidate the cache block since it will be inconsistent

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 16

ルックアップテーブル (Lookup Table, LUT)

0

1

0

1

0

1

bc

r1

r2

r3

r4

0

1

0

1

0

1

bc

r5

r6

r7

r8

0

1

a

d

LUT1 LUT2

2個の2入力のLUTで3入力のLUTを構成

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 17

Xilinx 7 Series FPGA Configuration Logic Block (CLB)

Slices = SLICEL + SLICEM
Distributed RAM (bit) = SLICEM * 256

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 18

Xilinx 7 Series Configuration Logic Block (CLB)

SLICELSLICEM

LUT

LUT

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 19

Distributed RAM

module m_RAM64X1S (clk, a, d, we, dout);
input wire clk;
input wire [5:0] a;
input wire d, we;
output wire dout;

reg [0:0] mem [0:63];
assign dout = mem[a];
always @(posedge clk) if(we) mem[a] <= d;

endmodule LUTRAM = 1

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 20

Distributed RAM

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 21

Distributed RAM

module m_RAM32M_Q (clk, a1, a2, a3, a4, d, we, dout1, dout2, dout3, dout4);
input wire clk;
input wire [4:0] a1, a2, a3, a4;
input wire [1:0] d;
input wire we;
output wire [1:0] dout1, dout2, dout3, dout4;

reg [1:0] mem [0:31];
assign dout1 = mem[a1];
assign dout2 = mem[a2];
assign dout3 = mem[a3];
assign dout4 = mem[a4];
always @(posedge clk) if(we) mem[a1] <= d;

endmodule

LUTRAM = 4

