2023年度(令和5年)版

Ver. 2023-10-10a

Course number: CSC.T363

コンピュータアーキテクチャ Computer Architecture

3. 半導体メモリ Memory Technologies

www.arch.cs.titech.ac.jp/lecture/CA/ Tue 13:30-15:10, 15:25-17:05 Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

吉瀬 謙二 情報工学系 Kenji Kise, Department of Computer Science kise _at_ c.titech.ac.jp 1

- MIG を使って DRAM メモリを動かそう (1)
 - https://www.acri.c.titech.ac.jp/wordpress/archives/6048

コンパイラ

Instruction Set Architecture (ISA), 命令セットアーキテクチャ インタフェース コンピュータ プロセッサ 入力 性能の評価 制御 記憶 データパス 出力

DRAM (dynamic random access memory)

Processor-Memory(DRAM) Performance Gap

The Memory System's Fact and Goal

Fact:

Large memories are slow, and fast memories are small

How do we create a memory that gives the illusion of being large, fast, and cheap ?

With hierarchy (階層) With parallelism (並列性)

ルックアップテーブル (Lookup Table, LUT)

a, b を入力として、c を出力とする LUT 値を保持するレジスタ(黄色)の値を選択する回路

2入力のLUTの構成

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

С

r1

r2

r3

r4

ルックアップテーブル (Lookup Table, LUT)

● レジスタの値を上から 0, 1, 1, 1 に設定すると、このLUTはORゲートと同じ動作をする。

● レジスタの値を上から 0, 0, 0, 1 に設定すると、このLUTはANDゲートと同じ動作をする。

ルックアップテーブル (Lookup Table, LUT)

2個の2入力のLUTで3入力のLUTを構成

Fig. 3. Choice between 1-output 6-input LUT and 2-output 5-input LUT in Xilinx FPGA devices.

A Typical Memory Hierarchy

By taking advantage of the principle of locality (局所性)

Present much memory in the cheapest technology

Cache

- Cache memory consists of a small, fast memory that acts as a buffer for the large memory.
- The nontechnical definition of cache is a safe place for hiding things.

Intel Core 2 Duo

Intel Sandy Bridge, January 2011

Main memory

Disk

Characteristics of the Memory Hierarchy

Memory Hierarchy Technologies

- Caches use SRAM (static random access memory) for speed and technology compatibility
 - Low density (6 transistor cells), high power, expensive, fast
 - Static: content will last "forever" (until power turned off)

- Main Memory uses DRAM for size (density)
 - High density (1 transistor cells), low power, cheap, slow
 - Dynamic: needs to be "refreshed" regularly (~ every 8 ms)
 - 1% to 2% of the active cycles of the DRAM
 - Addresses divided into 2 halves (row and column)
 - RAS or Row Access Strobe triggering row decoder
 - CAS or Column Access Strobe triggering column selector

Classical RAM Organization (~Square)

Datasheet

Classical DRAM Operation

• DRAM Organization:

RAS

CAS

Row Address

- N rows x N column x M-bit
- Read or Write M-bit at a time
- Each M-bit access requires

 a RAS (Row Address Strobe) /
 CAS (Column Address Strobe)
 cycle

Cycle Time

Col Address

Page Mode DRAM Operation

Column Address N cols Page Mode DRAM N x M SRAM to save a row DRAM Row After a row is read into the N rows Address SRAM "register" Only CAS is needed to access other • M-bit words on that row N x M SRAM RAS remains asserted while CAS is ٠ M bit planes toggled **M-bit Output Cycle Time** 2nd M-bit 4th M-bit 1st M-bit Access 3rd M-bit RAS CAS Row Address X Col Address Col Address Col Address **Col Address**

Synchronous DRAM (SDRAM) Operation

Other DRAM Architectures

- Double Data Rate SDRAMs DDR-SDRAMs (and DDR-SRAMs)
 - Double data rate because they transfer data on both the rising and falling edge of the clock
 - Are the most widely used form of SDRAMs
- DDR2-SDRAMs
- DDR3-SDRAMs

DRAM Memory Latency & Bandwidth Milestones

	DRAM	Page DRAM	FastPage DRAM	FastPage DRAM	Synch DRAM	DDR SDRAM
Module Width	16b	16b	32b	64b	64b	64b
Year	1980	1983	1986	1993	1997	2000
Mb/chip	0.06	0.25	1	16	64	256
Die size (mm ²)	35	45	70	130	170	204
Pins/chip	16	16	18	20	54	66
BWidth (MB/s)	13	40	160	267	640	1600
Latency (nsec)	225	170	125	75	62	52

Patterson, CACM Vol 47, #10, 2004

In the time that the memory to processor bandwidth doubles the memory latency improves by a factor of only 1.2 to 1.4 To deliver such high bandwidth, the internal DRAM has to be organized as interleaved memory banks

DDR4 SDRAM

- 規格:DDR4 デスクトップ用 動作電圧:1.2v JEDEC準拠品(XMP2.0非搭載)
- 速度: PC4-25600 3200Mhz CL值: 22-22-52 / 容量: 32GBx2枚(64G
- 対応チップセット:Intel:Z590/H570/B560/H510/Z490 ・AMD:

チップ規格	モジュール 規格	メモリクロック (MHz)	バスクロック (MHz)	転送速度 (GB/秒)	JEDEC 規格
DDR4-800	PC4-6400	50	400	6.4	
DDR4-1066	PC4-8528	66	533	8.5	
DDR4-1333	PC4-10664	83	666	10.6	
DDR4-1600	PC4-12800	100	800	12.8	0
DDR4-1866	PC4-14900	116	933	14.9	0
DDR4-2133	PC4-17000	133	1066	17.0	0
DDR4-2400	PC4-19200	150	1200	19.2	0
DDR4-2666	PC4-21333	166	1333	21.3	0
DDR4-2800	PC4-22400	175	1400	22.4	
DDR4-2933	PC4-23466	183	1466	23.4	0
DDR4-3000	PC4-24000	188	1500	24.0	
DDR4-3200	PC4-25600	200	1600	25.6	0
DDR4-3300	PC4-26400	206	1650	26.4	

Amazon, Wikipedia

Xilinx 7 Series FPGA Configuration Logic Block (CLB)

7 Series FPGAs Configurable Logic Block

User Guide

Slices = SLICEL + SLICEM Distributed RAM (bit) = SLICEM * 256

UG474 (v1.8) September 27, 2016

able 1-2:	Arux-/ FPGA	CLD Resour	ces				
Device	Slices ⁽¹⁾	SLICEL	SLICEM	6-input LUTs	Distributed RAM (Kb)	Shift Register (Kb)	Flip-Flops
7A12T	2,000 ⁽²⁾	1,316	684	8,000	171	86	16,000
7A15T	2,600 ⁽²⁾	1,800	800	10,400	200	100	20,800
7A25T	3,650	2,400	1,250	14,600	313	156	29,200
7A35T	5,200 ⁽²⁾	3,600	1,600	20,800	400	200	41,600
7A50T	8,150	5,750	2,400	32,600	600	300	65,200
7A75T	11,800 ⁽²⁾	8,232	3,568	47,200	892	446	94,400
7A100T	15,850	11,100	4,750	63,400	1,188	594	126,800
7A200T	33,650	22,100	11,550	134,600	2,888	1,444	269,200

Xilinx 7 Series Configuration Logic Block (CLB)

SLICEM

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

SLICEL

Distributed RAM

Figure 2-8: 64 X 1 Single Port Distributed RAM (RAM64X1S)

Table 2-3: Distribute	ed RAM Configuration	n	
RAM	Description	Primitive	Number of LUTs
32 x 1S	Single port	RAM32X1S	1
32 x 1D	Dual port	RAM32X1D	2
32 x 2Q	Quad port	RAM32M	4
32 x 6SDP	Simple dual port	RAM32M	4
64 x 1S	Single port	RAM64X1S	1
64 x 1D	Dual port	RAM64X1D	2
64 x 1Q	Quad port	RAM64M	4
64 x 3SDP	Simple dual port	RAM64M	4
128 x 1S	Single port	RAM128X1S	2
128 x 1D	Dual port	RAM128X1D	4
256 x 1S	Single port	RAM256X1S	4

Single port

- Common address port for synchronous writes and asynchronous reads
 - Read and write addresses share the same address bus

LUTRAM = 1

Distributed RAM

Figure 2-6: 32 X 2 Quad Port Distributed RAM (RAM32M)

Table 2-3: Distributed RAM Configuration					
RAM	Description	Primitive	Number of LUTs		
32 x 1S	Single port	RAM32X1S	1		
32 x 1D	Dual port	RAM32X1D	2		
32 x 2Q	Quad port	RAM32M	4		
32 x 6SDP	Simple dual port	RAM32M	4		
64 x 1S	Single port	RAM64X1S	1		
64 x 1D	Dual port	RAM64X1D	2		
64 x 1Q	Quad port	RAM64M	4		
64 x 3SDP	Simple dual port	RAM64M	4		
128 x 1S	Single port	RAM128X1S	2		
128 x 1D	Dual port	RAM128X1D	4		
256 x 1S	Single port	RAM256X1S	4		

- Quad port
 - One port for synchronous writes and asynchronous reads
 - Three ports for asynchronous reads

Distributed RAM

module m_RAM32M_Q (clk, a1, a2, a3, a4, d, we, dout1, dout2, dout3, dout4); input wire clk; input wire [4:0] a1, a2, a3, a4; input wire [1:0] d; input wire we; output wire [1:0] dout1, dout2, dout3, dout4; reg [1:0] mem [0:31]; assign dout1 = mem[a1]; assign dout2 = mem[a2]; assign dout3 = mem[a3];

assign dout4 = mem[a4]; always @(posedge clk) if(we) mem[a1] <= d; endmodule

BRAM

0.0

0.0

URAM

LUTRAM = 4

0

0

DSP

0

0

Failed Routes

LUT

4

0

FF

0

0

Figure 2-6: 32 X 2 Quad Port Distributed RAM (RAM32M)

