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Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to 
questions 1 - 7 in a PDF file 
via E-mail (kise [at] c.titech.ac.jp ) by February 13, 2024
• E-mail title should be “Report of Advanced Computer 

Architecture”

2. Please submit the report in 16 pages or less on A4 size 
PDF file, including the cover page.

3. Enjoy!
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1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem 
although there may be many researchers try to solve similar 
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA, 2004

• Focused Value Prediction, ISCA, 2020

• Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors, 
MICRO, 2023

• Emulating Optimal Replacement with a Shepherd Cache, MICRO, 2008
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2. RISC-V assembly programming

• Write RISC-V assembly code asm1.s for code1.c in C. Use Venus RISC-V editor 
and simulator to show that the output of the code you wrote is correct.

• Write RISC-V assembly code asm2.s for code2.c in C. Use Venus RISC-V editor 
and simulator to show that the output of the code you wrote is correct.

int sum = 0;
int i, j;
for (i=1; i=<100; i=i+2)

for (j=1; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i + i;         /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute              */
for (i=0; i<200; i++) sum += A[i];          /* obtain the sum       */

code1.c

code2.c
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3. Pipelined processor

• Design a 3-stage pipelined scalar processor supporting RISC-V 
add, addi, lw, sw, and bne instructions. 
Configure the critical paths of the three stages to have smaller 
delay assuming each module delay of the next slide

• The report should include a block diagram and the description of 
the changes of your design.

• Show the delay of the critical path of your design.
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proc9: critical path of 5-stage pipelining processor

• The path from P4 pipeline register to PC is the critical path.

• This 5-stage organization is commonly explained in typical 
computer architecture textbooks.
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4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 13 
instructions

• Modify this dataflow graph by removing two edges of the graph 
so that the number of execution cycles is reduced. Draw another 
cycle by cycle processing behavior of the modified graph.
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5. Parallel programming

• Adjust the number of elements N so that 
this sequential program (main7.c) takes 
about 1 second. Use this adjusted value 
for N. Use the time command to measure 
the execution time.

• Describe an efficient parallel program 
for the sequential program of main7.c
using LOCK, UNLOCK, and BARRIER of
pthread assuming a shared memory 
architecture of 4 cores.

• Explain why your code runs correctly
and why your code is efficient.

• Show your speedup over the sequential 
execution. To measure the execution 
time, use a computer with four or more 
cores.

#include <stdio.h>

#include <math.h>

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

float diff;

while (!done) {

diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

}

printf("diff=%6.2f¥n", diff);

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

main7.c
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6. Building blocks for synchronization 

• Implement your BARRIER() using some global variables, pthred lock, 
and unlock.

• Show your code and explain why your code runs correctly and why your 
code is efficient.

• Replace the barrier in the program in Question 5 with your designed 
one and measure the speedup over the sequential program.
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7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and 
main memory

• cache line size, write policy, write allocate/no-allocate, 
direct-mapped/set-associative, the number of caches (L1, L2, 
and L3?)

• Describe the cache coherence protocol used there


