
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

Final Report

Ver. 2024-01-25aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 13, 2024
• E-mail title should be “Report of Advanced Computer

Architecture”

2. Please submit the report in 16 pages or less on A4 size
PDF file, including the cover page.

3. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem
although there may be many researchers try to solve similar
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA, 2004

• Focused Value Prediction, ISCA, 2020

• Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors,
MICRO, 2023

• Emulating Optimal Replacement with a Shepherd Cache, MICRO, 2008

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

2. RISC-V assembly programming

• Write RISC-V assembly code asm1.s for code1.c in C. Use Venus RISC-V editor
and simulator to show that the output of the code you wrote is correct.

• Write RISC-V assembly code asm2.s for code2.c in C. Use Venus RISC-V editor
and simulator to show that the output of the code you wrote is correct.

int sum = 0;
int i, j;
for (i=1; i=<100; i=i+2)

for (j=1; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i + i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */

code1.c

code2.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

3. Pipelined processor

• Design a 3-stage pipelined scalar processor supporting RISC-V
add, addi, lw, sw, and bne instructions.
Configure the critical paths of the three stages to have smaller
delay assuming each module delay of the next slide

• The report should include a block diagram and the description of
the changes of your design.

• Show the delay of the critical path of your design.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

proc9: critical path of 5-stage pipelining processor

• The path from P4 pipeline register to PC is the critical path.

• This 5-stage organization is commonly explained in typical
computer architecture textbooks.

+

m6

P1

r_
pc

+

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

m8

m
u
x

1

0

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0

m9

m10

ra1

ra2

wa

wd

rd1

rd2

RF2

we

m5

m4

gen_imm

ALU

w_tkn

P2

IFID_ir [11:7]

32

P4

m
u
x1

0

m11

m12

32

P3

2

m
u
x1

0

2

m13

m
u
x1

0

2

IF stage ID stage EX stage WB stageMA stage

8nsec1nsec

1nsec

1nsec 1nsec 1nsec 1nsec

1nsec

2nsec

8nsec

5nsec

2nsec

4nsec

4nsec 2nsec

3nsec

1nsec

2nsec

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 13
instructions

• Modify this dataflow graph by removing two edges of the graph
so that the number of execution cycles is reduced. Draw another
cycle by cycle processing behavior of the modified graph.

75

6

8 103

4
1 2

Dataflow graph

11 12

13

9

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

5. Parallel programming

• Adjust the number of elements N so that
this sequential program (main7.c) takes
about 1 second. Use this adjusted value
for N. Use the time command to measure
the execution time.

• Describe an efficient parallel program
for the sequential program of main7.c
using LOCK, UNLOCK, and BARRIER of
pthread assuming a shared memory
architecture of 4 cores.

• Explain why your code runs correctly
and why your code is efficient.

• Show your speedup over the sequential
execution. To measure the execution
time, use a computer with four or more
cores.

#include <stdio.h>

#include <math.h>

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

float diff;

while (!done) {

diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

}

printf("diff=%6.2f¥n", diff);

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

main7.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

6. Building blocks for synchronization

• Implement your BARRIER() using some global variables, pthred lock,
and unlock.

• Show your code and explain why your code runs correctly and why your
code is efficient.

• Replace the barrier in the program in Question 5 with your designed
one and measure the speedup over the sequential program.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and
main memory

• cache line size, write policy, write allocate/no-allocate,
direct-mapped/set-associative, the number of caches (L1, L2,
and L3?)

• Describe the cache coherence protocol used there

