
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

13. Thread Level Parallelism:
Memory Consistency Model

Ver. 2024-02-01aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Synchronization

• Basic building blocks (instructions) :
• Atomic exchange

• Swaps register with memory location

• Test-and-set
• Sets under condition

• Fetch-and-increment
• Reads original value from memory and increments it in memory

• These requires memory read and write in uninterruptable
instruction

• load reserved (load linked) / store conditional
• If the contents of the memory location specified by the load reserved

are changed before the store conditional to the same address, the
store conditional fails

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Implementing an exchange EXCH

• EXCH x4, 0(x1) ; exchange x4 and 0(x1)

• Why isn’t this code atomic?

lw x2,0(x1) # load word, Tmp <- shared data

sw x4,0(x1) # store word, x4 -> shared data

add x4,x2,x0 # copy, x4 <- Tmp

Timer interrupt, cache coherence protocol

Memory

data

address(hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x1

x4

x2 (1)lw

(2)sw

(3) copy

0(x1)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Coherence 4 (Coh4)

• Core B

• Source: Core

• State: Invalid

• Request: Write miss (u)

• Function: Place write miss on bus

• Coh4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss (u)

• Function: attempt to write shared block;
invalidate the cache block

Bus

A

I
I

u=7S

Source: Core
Request: Write miss

B

I
I
I

C

I
I

u=7S

D

I
I
I

write miss (u)

Bus

A

I
I
I

Source: Core
Request: Write miss

B

I
I

u=9M

C

I
I
I

D

I
I
I

No action

load a block from memory or allow shared cache to service data

Source: Bus
Request: Write miss

Source: Bus
Request: Write miss

u=9

u=9

Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Implementing an atomic exchange EXCH

• Load reserved / store conditional instructions
• If the contents of the memory location specified by the load

reserved are changed before the store conditional to the same
address, the store conditional fails

• Store conditional instruction
• it returns 0 if it failed and 1 otherwise

• EXCH x4,0(x1) ; exchange x4 and 0(x1) atomically

try: add x3,x4,x0 # move exchange value, x3<=x4

lr.w x2,0(x1) # load reserved word

sc.w x3,0(x1) # store conditional word

beq x3,x0,try # branch if store fails (x3==0)

add x4,x2,x0 # put load value in x4, x4<=x2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

lr insn

non-atomic

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Implementing Lock (simple version)

• Spin lock version 1.0
• x1 is the address of the lock variable (shared variable) and

its initial value is 0 (not locked).

lock: addi x4, x0, 1 # x4 <= 1

lockit: EXCH x4, 0(x1) # atomic exchange

bne x4,x0,lockit # already locked?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Implementing Lock using coherence

• Spin lock version 2.0
• x1 is the address of the lock variable and its initial value is 0.

• We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

• This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is 0).

• This reduces the number of executions of expensive store
instructions.

lock: ld x4, 0(x1) # load of lock

bne x4,x0,lock # not available-spin if x4==1

addi x4,x0,1 # load locked value, x4<=1

EXCH x4,0(x1) # swap

bne x4,x0,lock # branch if lock wasn’t 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Implementing Unlock using coherence

• Unlock
• x1 is the address of the lock variable and its initial value is 0 (not

locked).

• Just resetting the lock variable x1

unlock: sw x0, 0(x1) # reset the lock, lock_variable <= 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Exercise 1

• Implementing Barrier using coherence

• This code counts up the arrived threads using a shared variable counter.

• All threads increments the variable, and the last thread set the shared
variable flag to exit the barrier.

• Lock() and Unlock() are the functions defined earlier.

int counter = 0;
int flag = 0;
int cores = 4; /* the number of cores */

BARRIER(){

Lock();

Unlock();

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Implementing Barrier using coherence

• This code counts up the arrived threads using a shared variable counter.

• All threads increments the variable, and the last thread set the shared
variable flag to exit the barrier.

int counter = 0;
int flag = 0;
int cores = 4; /* the number of cores */

BARRIER(){
int mycount;
Lock();

if (counter == 0) flag = 0; /* counter and flag are shared data */
counter = counter + 1; /* increment counter */
mycount = counter; /* mycount is a private variable */

Unlock();
if (mycount == cores) {

counter = 0;
flag = 1;

}
else while (flag == 0); /* wait until all threads reach BARRIER */

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Memory consistency: problem in multi-core context

• Assume that shared data A=0 and Flag=0 initially

• Core 1 writes data into A and sets Flag to tell Core 2 that data value
can be read (loaded) from A.

• Core 2 waits till Flag is set and then reads (loads) data from A.

• What is the printed value by Core 2?

A = 3; while (Flag==0);
Flag = 1; print A;

Core 1 Core 2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Problem in multi-core context

• If the two writes (stores) of different addresses on Core 1 can be
reordered, it is possible for Core 2 to read 0 from variable A.

• This can happen on most modern processors.

• For single-core processor, Code(1) and Code(2) are equivalent.
These writes may be reordered by compilers statically or by OoO
execution units dynamically.

• The printed value by Core 2 will be 0 or 3.

A = 3;
Flag = 1;

Code(1)

Flag = 1;
A = 3;

Code(2)

A = 3; while (Flag==0);
Flag = 1; print A;

Core 1 Core 2

Assume that A=0 and Flag=0 initially

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Problem in multi-core context

• Assume that A=0 and B=0 initially

• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

A = 1; B = 1;
print B; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Example behaviours

• Assume that A=0 and B=0 initially

Core 1 Core 2

A = 1;
print B;

B = 1;
print A;

0

1

The outputs are 01.

Core 1 Core 2

A = 1;

print B;

B = 1;

print A;

1

1

The outputs are 11.

time

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Problem in multi-core context

• Assume that A=0 and B=0 initially

• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

• This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

• The outputs may be 01, 10, 11, and 00.

A = 1; B = 1;
print B; print A;

Core 1 Core 2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Memory consistency models

• A single-core processor can reorder instructions subject only to
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-cores

• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core instruction
reordering so that

• shared-memory programming is intuitive

• but we do not lose single-core performance?

• The answers are called memory consistency models supported by
the processor

• Memory consistency models are all about ordering constraints on
independent memory operations in a single-core’s instruction stream

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Simple and intuitive model: sequential consistency

• Sequential consistency (SC) model

• It constrains all memory operations:

• Write -> Read

• Write -> Write

• Read -> Read

• Read -> Write

• Simple model for reasoning about parallel programs

• You can verify that the examples considered earlier work
correctly under sequential consistency.

• This simplicity comes at the cost of single-core performance.
• How to implement SC ?

• How do we modify sequential consistency model with the
demands of performance?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Relaxed consistency model: weak consistency

• Programmer specifies regions within which global memory
operations can be reordered

• Processor has fence or sync instruction:
• all data operations before fence in program order must complete

before fence is executed

• all data operations after fence in program order must wait for
fence to complete

• fences are performed in program order

• Example: RISC-V has fence instruction

• Implementation of fence
• a processor may flush all instructions

when a fence instruction is retired
Program
execution

Fence, Sync

Fence, Sync

Region
A

Region
B

Region
C

Memory operations within a region can be reordered

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

lr insn

non-atomic

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Release consistency model

• Further relaxation of weak consistency

• A fence instruction is divided into

• Acquire: operation like lock

• Release: operation like unlock

• Semantics of Acquire:

• Acquire must complete before all following
memory accesses

• Memory operations in region B and region C
must complete after Acquire B

• Semantics of Release:

• all memory operations before
Release must complete before
the Release

• Memory operations in region A
and region B must complete
before Release B

Acquire B

Release B

Region
A

Region
B

Region
C

Acquire B

Release B

Region
A

Region
B

Region
CProgram

execution

Acquire D

Release D

Region
D

Region
D

Release D

Acquire D

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Memory Consistency Model

• In the literature, there are a large number of other consistency
models
• Sequential consistency

• Causal consistency

• Processor consistency

• Weak consistency (weak ordering)

• Release consistency

• Entry consistency

• …

• It is important to remember that these are concerned with
reordering of independent memory operations within a single
thread.

• Weak or Release Consistency Models are adequate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Putting It All Together

• 18 core

• 2D mesh topology

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Syllabus (1/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Syllabus (2/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 13, 2024
• E-mail title should be “Report of Advanced Computer

Architecture”

2. Please submit the report in 16 pages or less on A4 size
PDF file, including the cover page.

3. Enjoy!

