Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

13. Thread Level Parallelism:
Memory Consistency Model

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Key components of many-core processors

* Main memory and caches

« New issues

memory consistency

* Core
* High-performance superscalar
processor providing a hardware e L e T e L
meChaniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZGT io n | ; Infirconnec’rion nef;wor'k . |
Y Y
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

BARRIER ensures all reach here

el

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
int ncores = 2;
pthread mutex_t m = PTHREAD MUTEX_INITIALIZER;
pthread_barrier_t barrier;
void solve pp (int pid) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i
mydiff = mydiff + fabsf(B[i] - A{1]);

/* private variables */
/* private variable */
/* private variable */

}
pthread_mutex_lock(&m);

diff = diff + mydiff;
pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier)s

if (diff <TOL) done = 1;

pthread _barrier wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] =
pthread_barrier_wait(&barrier);

B[i];

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

L=

After all cores update the diff,
~ if statement must be executed.

if (diff <TOL) done = 1;

TOKYO TECH 3

Synchronization

\
* Basic building blocks (instructions) : X

« Atomic exchange
« Swaps register with memory location
« Test-and-set
« Sets under condition
« Fetch-and-increment
* Reads original value from memory and increments it in memory

« These requires memory read and write in uninterruptable
instruction

* load reserved (load linked) / store conditional

« If the contents of the memory location specified by the load reserved
are changed before the store conditional to the same address, the
store conditional fails

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Implementing an exchange EXCH

\
« EXCH x4, 0(x1) ; exchange x4 and O(x1) OXFFEFFEFE

« Why isn't this code atomic? (2)sw | O(x1) | x1

x4 ——>| data

(3) COpy’1 ’/’//// OX0000000C

x2 (1)1w 0x00000008
0x00000004
0x00000000

Memory address (hex)

lw x2,0(x1) # load word, Tmp <- shared data
sw x4,0(x1) # store word, x4 -> shared data
add x4,x2,x0 # copy, x4 <- Tmp

Timer interrupt, cache coherence protocol

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Coherence 4 (Coh4)

e CoreB

e Source: Core
« State: Invalid

« Request: Write miss (u)

« Coh4 (Core A, C)
Source: Bus

« Function: Place write miss on bus

State: Shared

Request: Write miss (u)

Function: attempt to write shared block;
invalidate the cache block

A B | Source: Core C
| | Request: Write miss I
; i = - i
Slu=/| -~ I S|u=7| =~ I ~
Bus ‘gr)]\o'op write miss (U) ‘grzkdo’p <:60p
A | Source: Bus B | Source: Core C |Source: Bus _
| Request: Write miss I Request: Write miss | Request: Write miss No action
: = B :
I M| u=9 I I

™

ﬁ, Bus
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

load a black from memory or allow shared cache to service data

 Load reserved / store conditional instructions

« If the contents of the memory location specified by the load
reserved are changed before the store conditional o the same
address, the store conditional fails

« Store conditional instruction
* it returns O if it failed and 1 otherwise

Implementing an atomic exchange EXCH x
\

« EXCH x4,0(x1) :exchange x4 and O(x1) atomically

try: add x3,x4,x0 # move exchange value, x3<=x4
lr.w x2,0(x1) # load reserved word
sc.w x3,0(x1) # store conditional word
beq x3,x0,try # branch if store fails (x3==0)
add x4,x2,x0 # put load value in x4, x4<=x2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Datapath of SMT Oo0O execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Register file

A 4

Renaming I Map table/free tag buffer I |

Dispatch

RS |

Integer Floating-point |

Memory A{\emory dataflow

|
v v v v
LIt LIttty CIiI1i] [L11T]]

v
LLITTT] [TTTTI1]||Instructionwindow

! y

i

FP ALU

v
ALU I ALU l Branchl
‘T

|||||'|'||||||||||||||J

Reor'der' buffer(ROB)

= Register dataflow

Af_a'

A

A 4
L]

Store
queue

v
Adr gen. Adr gen. ‘l
i' 1r insn
\ 4

LJ
! Ml non-atomic

\ 4

»
Data cache |

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS)

8

Implementing Lock (simple version)

 Spin lock version 1.0
« x1is the address of the lock variable (shared variable) and
its initial value is O (not locked).

lock: addi x4, x0, 1 # x4 <=1
lockit: EXCH x4, 0(x1) # atomic exchange
bne x4,x0,lockit # already locked?

« EXCH x4,0(x1) ;exchange x4 and O(x1) atomically

try: add x3,x4,x0 # move exchange value, x3<=x4
Ir.w x2,0(x1) # load reserved word
sc.w x3,0(x1) # store conditional word
beq x3,x0,try # branch if store fails (x3==0)
add x4,x2,x0 # put load value in x4, x4<=x2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing Lock using coherence

« Spin lock version 2.0
« x1is the address of the lock variable and its initial value is O.

« We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

« This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is O).

 This reduces the number of executions of expensive store
instructions.

lock: 1d x4, 0(x1) # load of lock
bne x4,x0, lock # not available-spin if x4==1
addi x4,x0,1 # load locked value, x4<=1
EXCH x4,0(x1) # swap
bne x4,x0,lock # branch if lock wasn’t ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

10

Implementing Unlock using coherence x
\

* Unlock

« x1is the address of the lock variable and its initial value is O (not
locked).

« Just resetting the lock variable x1

unlock: sw x0, 0(x1) # reset the lock, lock variable <= ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Exercise 1

« Implementing Barrier using coherence \
« This code counts up the arrived threads using a shared variable counter.

* All threads increments the variable, and the last thread set the shared
variable flag to exit the barrier.

« Lock() and Unlock() are the functions defined earlier.

int counter = 0;
int flag = 0;
int cores = 4; /* the number of cores */

BARRIER(){

Lock();

Unlock();

}

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Implementing Barrier using coherence

A
« This code counts up the arrived threads using a shared variable counter.

« All threads increments the variable, and the last thread set the shared
variable flag to exit the barrier.
int counter = 0;

int flag = 0;
int cores = 4; /* the number of cores */

BARRIER(){
int mycount;
Lock();
if (counter == @) flag = @; /* counter and flag are shared data */
counter = counter + 1; /* increment counter &
mycount = counter; /* mycount is a private variable */
Unlock();
if (mycount == cores) {
counter = 0;
flag = 1;
}
else while (flag == 0); /* wait until all threads reach BARRIER */
}

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Memory consistency: problem in multi-core context X
\

« Assume that shared data A=0 and Flag=0 initially

« Core 1 writes data intfo A and sets Flag to tell Core 2 that data value
can be read (loaded) from A.

« Core 2 waits till Flag is set and then reads (loads) data from A.
* What is the printed value by Core 2?

Core 1 Core 2
A = 3; while (Flag==0);
Flag = 1; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Problem in multi-core context \2\%
\

« If the two writes (stores) of different addresses on Core 1 can be
reordered, it is possible for Core 2 to read O from variable A.
« This can happen on most modern processors.

* For single-core processor, Code(1) and Code(2) are equivalent.
These writes may be reordered by compilers statically or by OoO
execution units dynamically.

« The printed value by Core 2 will be O or 3.

Code(1) Code(2)
A = 3; Flag = 1;
Flag = 1; A = 3;
Core 1 Core 2
A = 3; while (Flag==0);
Flag = 1; print A;

ﬁw Assume that A=0 and Flag=0 initially
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Problem in multi-core context \2\%
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
 Intuitively, the outputs may be 01, 10, and 11.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example behaviours X
\

« Assume that A=0 and B=0 initially
time
Core 1 Core 2 Core 1 Core 2

A= 1; A= 1;

rint B; — 0
p 5 B = 1;

print A;—— 1
B =1;

print A;—— 1 print B; —— 1

The outputs are 01. The outputs are 11.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Problem in multi-core context \2\%
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
 Intuitively, the outputs may be 01, 10, and 11.

 This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

« The outputs may be 01, 10, 11, and 00.

Core 1 Core 2
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Memory consistency models

\
A single-core processor can reorder instructions subject only to X
control and data dependence constraints

* These constraints are not sufficient in shared-memory multi-cores
 simple parallel programs may produce counter-intuitive results

* Question: what constraints must we put on single-core instruction
reordering so that

* shared-memory programming is intuitive
« but we do not lose single-core performance?

» The answers are called memory consistency models supported by
the processor

« Memory consistency models are all about ordering constraints on
independent memory operations in a single-core's instruction stream

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Simple and intuitive model: sequential consistency X
\

« Sequential consistency (SC) model

Tt constrains all memory operations:
« Worite -> Read
* Write -> Write
« Read -> Read
« Read -> Write
« Simple model for reasoning about parallel programs

* You can verify that the examples considered earlier work
correctly under sequential consistency.

 This simplicity comes at the cost of single-core performance.
« How to implement SC?

« How do we modify sequential consistency model with the
demands of performance?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Relaxed consistency model: weak consistency X
\

* Programmer specifies regions within which global memory
operations can be reordered

 Processor has fence or sync instruction:

» all data operations before fence in program order must complete
before fence is executed

* all data operations after fence in program order must wait for
fence to complete

« fences are performed in program order Re%ion
« Example: RISC-V has fence instruction |._ L_———— - - Fence, Sync
« Implementation of fence Region
* a processor may flush all instructions - s
when a fence instruction is retired "o oo oo rence, oyne
Program Region
execution C

ﬁ’ Memory operations within a region can be reordered
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Datapath of SMT Oo0O execution processor

Instruction cache

'

Branch handler It

\ 4

Instruction flow

Instruction fetch I

Instruction decode

_Instruction decode |
___Renaming__|
__Dissatch |

Map table/free tag buffer | |

Memory dataflow

Renaming
Register file > Dispatch
S Integer Floating-point | Memory
¥ ¥ ¥ ¥ ¥ ¥
I e e o [O [(TT11] T[]
v v v

v
ALU_|

FP ALU

ALU l Branch I
‘T

Instruction window

‘
o

i' 1r insn

|||III|||III||IIII||J

Reor'der' buffer(ROB)

= Register dataflow

Af_a'

A 4
L]

Store
queue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

v v
Adr gen. I Adr gen. I
A 4

A 4

\ 4

Data cache |

A

S

Reservation station (RS)

LJ
Ml non-atomic

22

Release consistency model

A

Further relaxation of weak consistency

fence instruction is divided into
Acquire: operation like lock
Release: operation like unlock

SemanTiCS Of ACQUir'C: Program

execution

Acquire must complete before all following
memory accesses

Memory operations in region B and region C
must complete after Acquire B

_ Region
« Semantics of Release: A
« all memory operations before :
Region

Release must complete before B
the Release

« Memory operations in region A Release B
and region B must complete

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Region
A
———————— Acquire B
Region
B
———————- Release B
Region
C
———————— Acquire D
Region
D
| JC Release D
Acquire B
Region
C
Region
D

Memory Consistency Model

\
* Inthe literature, there are a large number of other consistency 2%
models

« Sequential consistency

 Causal consistency

* Processor consistency

« Weak consistency (weak ordering)
« Release consistency

« Entry consistency

« It is important tfo remember that these are concerned with
reordering of independent memory operations within a single
thread.

» Weak or Release Consistency Models are adequate

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Key components of many-core processors
A
« Interconnection network

* connecting many modules on a chip achieving high throughput
and low latency

* Main memory and caches
« Caches are used to reduce latency and to lower network traffic
A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

* Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
mZChGnism 1-0 SUPPOPT Thr.ead Caches Caches Caches Caches
Sy n C h r'o n i ZGT io n | ; In’zrconnec’rion nef;work . |
v v
Main memory (DRAM) I/0

~ =
@ 25

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Putting It All Together

+ 18 core
+ 2D mesh topology

]

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (1/3)

Course description and aims

This course aims to provide students with cutting-edge technologies and future trends of computer architecture with focusing on a

microprocessor which plays an important role in the downsizing, personalization, and improvement of performance and power consumption of
computer systems such as PCs, personal mobile devices, and embedded systems.

In this course, first, along with important concepts of computer architecture, students will learn from instruction set architectures to
mechanisms for extracting instruction level parallelism used in out-of-order superscalar processors. After that, students will learn mechanisms
for exploiting thread level parallelism adopted in multi-processors and multi-core processors.

Student learning outcomes

By taking this course, students will learn:

(1) Basic principles for building today’s high-performance computer systems

(2) Mechanisms for extracting instruction level parallelism used in high-performance microprocessors
(3} Methods for exploiting thread level parallelism adopted in multi-processors and multi-core processors
(4) New inter-relationship between software and hardware

Keywords

Computer Architecture, Processcr, Embedded System, multi-processor, multi-core processor

Competencies that will be developed

v Specialist skills

Class flow

Before coming to class, students should read the course schedule and check what topics will be covered. Required learning should be
completed outside of the classroom for preparation and review purposes.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (2/3)

Textbook(s)

John L. Hennessy, David A. Patterson. Computer Architecture A Quantitative Approach, Fifth Edition. Morgan Kaufmann Publishers Inc., 2012

Reference books, course materials, etc.

william James Dally, Brian Patrick Towles. Principles and Practices of Interconnection Networks, Morgan Kaufman Publishers Inc., 2004.

Assessment criteria and methods

Students will be assessed on their understanding of instruction level parallelism, multi-processor, and thread level parallelism. Students”
course scores are based on the mid-term report and assignments (402}, and the final report (60%).

Related courses

CSC.T363 : Computer Architecture
CSC.T341 : Computer Logic Design

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment in the related courses is desirable.

Contact information (e-mail and phone) Notice : Please replace from "[at]"” to "@"(half-width character).

Kise Kenji: kise[at]c.titech.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 2

Class 10

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Pipelining

Instruction Level Parzllelism: Concepts and Chellenges

Instruction Level Parzllelism: Instruction Fetch and Branch Preadiction

Instruction Level Parzllelism: Advanced Techniques for Branch Prediction

Instruction Level Parallelism: Dynamic Scheduling

Instruction Level Parzllelism: Expleiting ILP Using Multiple Issue and
Speculation

Instruction Level Parzllelism: Out-of-order Execution and Multithreading

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memary hierarchy
designs

Understand the idea and organization of pipelining

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction lavel
parallelism

Understand the advanced techniques for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

Class 11

Class 12

Class 13

Class 14

Multi-Processor: Distributed Memory and Shared Memory Architecture

Thread Level Parzllelism: Coherence and Synchronization

Thread Level Parallelism: Memory Consistency Model

Thread Level Parallelism: Interconnection Network and Man-core
Processors

Understand the distributed memeory and shared
memory architecture for multi-processors

Understand the coherence and synchronization for
thread level parallelism

Understand the memory consistency medel for thread
level parallelism

Understand the interconnection network and many-
core processors for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Final report of Advanced Computer Architecture

\
1. Please submit your final report describing your answers Tox
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 13, 2024

E-mail title should be "Report of Advanced Computer
Architecture”

2. Please submit the report in 16 pages or less on A4 size
PDF file, including the cover page.

3. Enjoy!

K CSC.T433 Advance d Computer Architecture, Department of Computer Science, TOKYO TECH 30

