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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization

System

Chip
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Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches
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Orchestration 

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores – 1;   /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement  must be executed. 

if (diff <TOL) done = 1;
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Synchronization

• Basic building blocks (instructions) :
• Atomic exchange

• Swaps register with memory location

• Test-and-set
• Sets under condition

• Fetch-and-increment
• Reads original value from memory and increments it in memory

• These requires memory read and write in uninterruptable 
instruction

• load reserved (load linked) / store conditional
• If the contents of the memory location specified by the load reserved 

are changed before the store conditional to the same address, the 
store conditional fails
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Implementing an exchange EXCH

• EXCH x4, 0(x1)   ; exchange x4 and 0(x1) 

• Why isn’t this code atomic?

lw x2,0(x1) # load  word,  Tmp <- shared data

sw x4,0(x1) # store word,  x4  -> shared data

add x4,x2,x0 # copy,        x4  <- Tmp

Timer interrupt, cache coherence protocol

Memory

data

address(hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x1

x4

x2 (1)lw

(2)sw

(3) copy

0(x1) 
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Coherence 4 (Coh4)

• Core B

• Source: Core

• State: Invalid

• Request: Write miss (u)

• Function: Place write miss on bus

• Coh4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss (u)

• Function: attempt to write shared block; 
invalidate the cache block
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C

I
I
I

D

I
I
I

No action

load a block from memory or allow shared cache to service data

Source: Bus
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Implementing an atomic exchange EXCH

• Load reserved / store conditional instructions
• If the contents of the memory location specified by the load 

reserved are changed before the store conditional to the same 
address, the store conditional fails

• Store conditional instruction
• it returns 0 if it failed and 1 otherwise

• EXCH x4,0(x1)   ; exchange x4 and 0(x1) atomically

try: add x3,x4,x0 # move exchange value, x3<=x4

lr.w x2,0(x1) # load reserved word

sc.w x3,0(x1) # store conditional word

beq x3,x0,try # branch if store fails (x3==0)

add x4,x2,x0 # put load value in x4, x4<=x2
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Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

lr insn

non-atomic
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Implementing Lock (simple version)

• Spin lock version 1.0
• x1 is the address of the lock variable (shared variable) and 

its initial value is 0 (not locked).

lock:   addi x4, x0, 1     # x4 <= 1

lockit: EXCH x4, 0(x1) # atomic exchange

bne x4,x0,lockit # already locked?
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Implementing Lock using coherence

• Spin lock version 2.0
• x1 is the address of the lock variable and its initial value is 0.

• We can cache the lock using the coherence mechanism to maintain 
the lock value coherently.

• This code spins by doing read on a local copy of the lock until it 
successfully sees that the lock is available (lock variable is 0).

• This reduces the number of executions of expensive store 
instructions.

lock: ld x4, 0(x1) # load of lock

bne x4,x0,lock # not available-spin if x4==1

addi x4,x0,1 # load locked value, x4<=1

EXCH x4,0(x1) # swap

bne x4,x0,lock # branch if lock wasn’t 0
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Implementing Unlock using coherence

• Unlock
• x1 is the address of the lock variable and its initial value is 0 (not 

locked).

• Just resetting the lock variable x1

unlock: sw x0, 0(x1) # reset the lock, lock_variable <= 0
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Exercise 1

• Implementing Barrier using coherence

• This code counts up the arrived threads using a shared variable counter.

• All threads increments the variable, and the last thread set the shared 
variable flag to exit the barrier. 

• Lock() and Unlock() are the functions defined earlier.

int counter = 0;
int flag = 0;
int cores = 4; /* the number of cores */

BARRIER(){

Lock();

Unlock();

}
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Implementing Barrier using coherence

• This code counts up the arrived threads using a shared variable counter.

• All threads increments the variable, and the last thread set the shared 
variable flag to exit the barrier. 

int counter = 0;
int flag = 0;
int cores = 4; /* the number of cores */

BARRIER(){
int mycount;
Lock();

if (counter == 0) flag = 0; /* counter and flag are shared data */
counter = counter + 1;      /* increment counter                */
mycount = counter;          /* mycount is a private variable    */

Unlock();
if (mycount == cores) {

counter = 0;
flag = 1;

}
else while (flag == 0);         /* wait until all threads reach BARRIER */

}
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Memory consistency: problem in multi-core context

• Assume that shared data A=0 and Flag=0 initially

• Core 1 writes data into A and sets Flag to tell Core 2 that data value 
can be read (loaded) from A.

• Core 2 waits till Flag is set and then reads (loads) data from A.

• What is the printed value by Core 2?

A = 3; while (Flag==0); 
Flag = 1; print A; 

Core 1 Core 2
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Problem in multi-core context

• If the two writes (stores) of different addresses on Core 1 can be 
reordered, it is possible for Core 2 to read 0 from variable A.

• This can happen on most modern processors.

• For single-core processor, Code(1) and Code(2) are equivalent. 
These writes may be reordered by compilers statically or by OoO 
execution units dynamically.  

• The printed value by Core 2 will be 0 or 3.

A = 3;
Flag = 1;

Code(1)

Flag = 1;
A = 3;

Code(2)

A = 3; while (Flag==0); 
Flag = 1; print A; 

Core 1 Core 2

Assume that A=0 and Flag=0 initially
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Problem in multi-core context

• Assume that A=0 and B=0 initially

• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

A = 1; B = 1; 
print B; print A; 

C1 (Core 1) C2 (Core 2)
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Example behaviours

• Assume that A=0 and B=0 initially

Core 1 Core 2

A = 1; 
print B;

B = 1; 
print A;

0

1

The outputs are 01.

Core 1 Core 2

A = 1; 

print B;

B = 1;

print A;

1

1

The outputs are 11.

time
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Problem in multi-core context

• Assume that A=0 and B=0 initially

• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

• This is true only if reads and writes on the same core to 
different locations are not reordered by the compiler or 
the hardware.

• The outputs may be 01, 10, 11, and 00.

A = 1; B = 1; 
print B; print A; 

Core 1 Core 2
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Memory consistency models

• A single-core processor can reorder instructions subject only to 
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-cores

• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core instruction 
reordering so that

• shared-memory programming is intuitive

• but we do not lose single-core performance?

• The answers are called memory consistency models supported by 
the processor

• Memory consistency models are all about ordering constraints on 
independent memory operations in a single-core’s instruction stream 
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Simple and intuitive model: sequential consistency

• Sequential consistency (SC) model

• It constrains all memory operations:

• Write -> Read

• Write -> Write

• Read -> Read

• Read -> Write

• Simple model for reasoning about parallel programs

• You can verify that the examples considered earlier work 
correctly under sequential consistency.

• This simplicity comes at the cost of single-core performance.
• How to implement SC ?

• How do we modify sequential consistency model with the 
demands of performance?
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Relaxed consistency model: weak consistency

• Programmer specifies regions within which global memory 
operations can be reordered

• Processor has fence or sync instruction:
• all data operations before fence in program order must complete 

before fence is executed

• all data operations after fence in program order must wait for 
fence to complete

• fences are performed in program order

• Example: RISC-V has fence instruction

• Implementation of fence 
• a processor may flush all instructions 

when a fence instruction is retired
Program 
execution

Fence, Sync

Fence, Sync

Region 
A

Region
B

Region 
C

Memory operations within a region can be reordered
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Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

lr insn

non-atomic
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Release consistency model

• Further relaxation of weak consistency

• A fence instruction is divided into 

• Acquire: operation like lock

• Release: operation like unlock

• Semantics of Acquire:

• Acquire must complete before all following 
memory accesses

• Memory operations in region B and region C 
must complete after Acquire B

• Semantics of Release: 

• all memory operations before 
Release must complete before 
the Release

• Memory operations in region A
and region B must complete 
before Release B

Acquire B

Release B

Region 
A

Region
B

Region 
C

Acquire B

Release B

Region 
A

Region
B

Region 
CProgram 

execution

Acquire D

Release D

Region
D

Region
D

Release D

Acquire D
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Memory Consistency Model

• In the literature, there are a large number of other consistency 
models
• Sequential consistency

• Causal consistency

• Processor consistency

• Weak consistency (weak ordering)

• Release consistency

• Entry consistency

• …

• It is important to remember that these are concerned with 
reordering of independent memory operations within a single 
thread.

• Weak or Release Consistency Models are adequate
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches
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Putting It All Together

• 18 core

• 2D mesh topology
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Syllabus (1/3)
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Syllabus (2/3)
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Syllabus (3/3)
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Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to 
questions 1 - 7 in a PDF file 
via E-mail (kise [at] c.titech.ac.jp ) by February 13, 2024
• E-mail title should be “Report of Advanced Computer 

Architecture”

2. Please submit the report in 16 pages or less on A4 size 
PDF file, including the cover page.

3. Enjoy!


