
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

11. Thread Level Parallelism:
Interconnection Network

Ver. 2024-01-25aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func2, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –lm –o a.out1
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Sample of some parallel programs using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –lm –o a.out1
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

main1.c
sequential program

main3.c
parallel program with func1

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){

pthread_mutex_lock(&m);

a++;

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main4.c
parallel program with func1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an
interconnection network.

• The shared memory or shared address space (SAS) is used as a means
for communication between the processors.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architectures

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Instruction window

Parallel programming

• Several dependent threads run at the same time on a multi-processor
(many-core) system.

Instruction window
(c)

Instruction window

8 5

7

6

4

Instruction window
(e)

Instruction window

thread A

thread B
data dependency

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0. Preparing an optimized sequential program (baseline)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Sequential version as the baseline

• A sequential program main5.c and the execution result

• Computations in blue color are fully parallel

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);

printf("¥n");

solve();

}

0.00 101.00 104.00 109.00 116.00 125.00 136.00 0.00 0.00 0.00

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32

0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76

0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50

0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68

0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88

0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80

0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12

0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06

0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26

0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47

0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70

0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95

0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23

0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53

0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85

0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20

0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x

A[0] A[9]

i=4

+, +, x

i=8

A

B
main5.c sequential program

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[]

• Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

int ncores = 2;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;

create thread1 and call solve_pp(0);

create thread2 and call solve_pp(1);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation for B[]

pid = 0, ncores = 2 pid = 1, ncores = 2

mymin = 1
mymax = 4

mymin = 5
mymax = 8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Parallel program after orchestration

void solve_pp (void *p) {

int pid = *(int *)p;

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores - 1; /* private variable */

while (!done) {

float mydiff = 0.0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

int main(){

pthread_t t1, t2;

int pid0 = 0;

int pid1 = 1;

for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);

pthread_create(&t1, NULL, (void *)solve_pp, (void*)&pid0);

pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pid1);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

for (int i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("¥n");

return 0;

}

main6.c parallel program

% gcc main6.c –O0 –lpthread –lm –o a.out6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Performance metrics of interconnection network

• Network cost
• number of links on a switch to connect to the network (plus

one link to connect to the processor)

• width in bits per link, length of link

• Network bandwidth (NB)
• represents the best case

• bandwidth of each link x number of links

• Bisection bandwidth (BB)
• represents the worst case

• divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Bus Network

• N cores (), N switch (), 1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case) = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Exercise 1

• Bus Network with multiplexer (mux)

• one N-input mux for N cores

• Draw the bus network organization of 4 cores using a 4-
input mux.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Ring Network

• N cores, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth x N

• BB (worst case) = link bandwidth x 2

• If a link is as fast as a bus, the ring is only twice as fast as a bus in the
worst case, but is N times faster in the best case

A B C E FD

A B C E FD
The case where
A -> F, B->A, C->B, F->D

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB memory

• PS3, IBM Roadrunner (12k cores)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3
from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Intel Xeon Phi (2012)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Fat Tree (1)

• Trees are good structures. People in CS use them all the
time. Suppose we wanted to make a tree network.

• Any time A wants to send to C, it ties up the upper links, so
that B can't send to D.

• The bisection bandwidth on a tree is horrible - 1 link, at all
times

• The solution is to 'thicken' the upper links.

• More links as the tree gets thicker increases the bisection
bandwidth

C DA B

N = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Fat Tree

• N cores, log(N-1) x logN switches, 2 up + 4 down = 6
links/switch, N x logN links

• N simultaneous transfers

• NB = link bandwidth x N log N

• BB = link bandwidth x 4

N = 4 N = 8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Crossbar (Xbar) Network

• N cores, N2 switches (unidirectional), 2 links/switch,
N2 links

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N (worst case)

D

C

B

A

Wikipedia

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Crossbar (Xbar) Network with mux

C

B

A

A symbol of XbarD

C

B

A

D

• N N-input multiplexers

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Mesh Network

• N cores, N switches, 5 links/switch

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N1/2 (worst case)

N = 16N = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

2D and 3D Mesh / Torus Network

2D Mesh

Torus3D Mesh

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Epiphany-V: A 1024 core 64-bit RISC SoC (2016)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Intel Xeon Scalable Processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

Bus vs. Networks on Chip (NoC) of mesh topology

intersection

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and
XY-dimension order routing

PM: Processing Module or Core,
R: Router

Packet
(tag + data)

R

PM
0, 2

R

PM
1, 2

R

PM
2, 2

R

PM
3, 2

R

PM
0, 1

R

PM
1, 1

R

PM
2, 1

R

PM
3, 1

R

PM
0, 0

R

PM
1, 0

R

PM
2, 0

R

PM
3, 0

R

PM
0, 3

R

PM
1, 3

R

PM
2, 3

R

PM
3, 3

x

y

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

• A packet has one head flit and some body flits.

• For simplicity, assume that a packet has only one flit.

• Later we see a packet which has some flits.

• Each flit has typical three fields:

• Payload (data)

• Route information

• Virtual channel identifier (VC)

VCRoute infoFlit Payload

Packet (tag + data)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 34

Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

• A packet has one head flit and some body flits.

• Each flit has typical three fields:

• payload(data) or route information(tag)

• flit type : head, body, tail, etc.

• virtual channel identifier

VC Type Route info

VC Type Payload

Head flit

Body flit

Head and body flit formats

Packet (tag + data)

Head flit

Body flit

Body flit

Body flit

Head flit

Body flit

Body flit

Tail flit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 35

Routing

• XY dimension order routing (DOR), and YX DOR

x

y

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 36

Simple NoC router architecture

• Routing computation for XY-dimension order

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

Node (3, 3)

Packet from
node (1, 3) to
node (3, 1)

NoC router

Node (3, 3)

dest (3, 1)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 37

Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N

S

E

W

FIFO

NoC router

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 38

Simple NoC router architecture

• Flow control (back pressure)
• When the destination router's input buffer

is full, the packet cannot be sent.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

NoC router

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 39

Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking
• The first (head) packet in the same buffer

blocks the movement of subsequent packets.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

FIFO

NoC router

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 40

Two (physical) networks to mitigate HOL ?

Simple NoC router

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X FIFO full

HOL blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

HOL blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X FIFO full

HOL blocking

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 41

Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-)

E (X+)

S (Y+)

W (X-)

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

N (Y-)

E (X+)

S (Y+)

W (X-)

X

VC0

VC1

VC2

PM
(Module)

PM
(Module)

FIFO full

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

FIFO full

HOL blocking

VC NoC routerSimple NoC router

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 42

Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate
head-of-line (HOL) blocking

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 43

Pipelining the NoC router microarchitecture

IB

IB

IB

RC

IB

SA

IB

IB

ST

ST

IB IB ST

IB IB ST

OB

OB

OB

OB

Head flit

Body flit

Body flit

Body flit

Routing Control Unit

Header
Flit

Forw.Table

C
ro

ss
B
a
r

Crossbar
Control

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Arbitration
Unit

Output
Port #

IB (Input Buffering) RC (Route Computation)
SA (Switch Arb)
- VCA (VC Arb) -

ST (Switch Traversal) OB (Output Buffering)

Input buffers

Input buffers

D
E
M

U
X

P
h
y
si

ca
l

ch
a
n
n
e
l

L
in

k
C
o
n
tr

o
l

L
in

k
C
o
n
tr

o
l

P
h
y
si

ca
l

ch
a
n
n
e
l

M
U

X

D
E
M

U
X M

U
X

Output buffers

L
in

k
C
o
n
tr

o
l

Output buffers

L
in

k
C
o
n
tr

o
l

P
h
y
si

ca
l

ch
a
n
n
e
l

P
h
y
si

ca
l

ch
a
n
n
e
l

D
E
M

U
X M

U
X

D
E
M

U
X M

U
X

“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int’l Symposium on High Performance Computer Architecture, January, 2001.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 44

Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and
XY-dimension order routing

PM: Processing Module or Core,
R: Router

Packet
(tag + data)

R

PM
0, 2

R

PM
1, 2

R

PM
2, 2

R

PM
3, 2

R

PM
0, 1

R

PM
1, 1

R

PM
2, 1

R

PM
3, 1

R

PM
0, 0

R

PM
1, 0

R

PM
2, 0

R

PM
3, 0

R

PM
0, 3

R

PM
1, 3

R

PM
2, 3

R

PM
3, 3

x

y

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 45

Bus vs. Networks on Chip (NoC) of mesh topology

FIFO

Packet
(tag + data)

Distributed system

intersection

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 46

Average packet latency of mesh NoCs

• 5 stage router pipeline

• Uniform traffic (destination nodes are selected randomly)

8x8 NoC 64x64 NoC (4096 nodes)

Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip,
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).

Saturation

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 47

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 48

Bus Network with multiplexer (mux)

C

B

A

D

C

B

A

D

• one N-input multiplexer for N cores

The bus network organization of 4 cores using a 4-input mux.

