Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

11. Thread Level Parallelism:
Interconnection Network

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Sample of a wrong parallel program using pthread

% gcc mainl.c -00 -lpthread -1m -o a.outl

% ./a.outl
main: 20000000

\

Single Program Multiple Data (SPMD)

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000

int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

};

int func2(){
int i;
for(i=0; i<N; i++){ a++; }

};

int main(){
funcl();
func2();

printf("main: %d¥n", a);
return 0;

mainl.c
sequential program

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

};

int func2(){
int i;
for(i=0; i<N; i++){ a++; }

}s

int main(){
pthread_t t1, t2;
pthread create(&t1, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)func2, NULL);

#tinclude <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

}s

int main(){
pthread_t t1, t2;
pthread create(&tl, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)funcl, NULL);

pthread join(tl, NULL);
pthread join(t2, NULL);

printf("main: %d¥n", a);

parallel program with funcl and func2

return 0;
pthread join(tl, NULL); }
pthread_join(t2, NULL);
printf("main: %d¥n", a);
return 0;

}
main2.c main3.c

parallel program with funcl

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample of some parallel programs using pthread

% gcc mainl.c -00 -lpthread -1m -o a.outl

% ./a.outl
main: 20000000

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000

int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){ a++;

};

int func2(){
int i;
for(i=0; i<N; i++){ a++;

};

int main(){
funcl();
func2();

printf("main: %d¥n", a);
return 0;

mainl.c
sequential program

#tinclude <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

1

int main(){
pthread_t t1, t2;
pthread create(&tl, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)funcl, NULL);

pthread_join(tl, NULL);
pthread join(t2, NULL);

printf("main: %d¥n", a);

#tinclude <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million

int a = 9;

pthread _mutex_t m = PTHREAD_MUTEX_ INITIALIZER;

int funcl(){
int i;
for(i=0; i<N; i++){
pthread_mutex_lock(&m);
a++;
pthread_mutex_unlock(&m);
}
};

int main(){
pthread_t t1, t2;
pthread create(&tl, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)funcl, NULL);

return 0;
} pthread_join(tl, NULL);
pthread_join(t2, NULL);
printf("main: %d¥n", a);
return 0;
}
main3.c main4.c

parallel program with funcl

parallel program with funcl

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

|

Shared memory many-core architecture

3
« The single-chip integrates many cores (conventional processors) and an
intferconnection network.

« The shared memory or shared address space (SAS) is used as a means
for communication between the processors.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

The free lunch is over

* Programmers have to worry much about performance and concurrency
 Parallel programming & multi-processor (multi-core) architectures

Free Lunch

Programmers haven't The traditional approach
really had to worry to application

much about performance was to
performance or simply wait for the next
concurrency because generation of processor;
of Moore's Law most software

developers did not need

to invest in performance
‘ tuning, and enjoyed a
Why we did not see 4GHz “free lunch” from

processors in Market? h ardware
. improvements.

@3 The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Parallel programming

A
« Several dependent threads run at the same time on a multi-processor
(many-core) system.

Instruction window
| J[8][6][5]
L L el 7]

Tnstruction window
<C)||||||||||||||||||||
thread A Tnstruction window
G O A
data dependency \\
’rhr‘ead B Ins‘rru}t{on window

N N Y I O B
&;SC.T«B Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Fo

Hw = O

<

ur steps in creating a parallel program

Preparing an optimized sequential program (baseline)
Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors (cores)
Partitioning
|
| |
D) A Cr) M
c SR ¢ a
o O : :
’ %ﬁs eo i
o} m t
s _>©© e — ™ ; —> ‘ — ° —
; QO t f P — P
; 8@ 0
n n
O
Sequential Tasks Processes Parallel Processors
computation program

Adapted from Parallel Computer Architecture, David E. Culler
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simulating ocean currents

00000000 O0O0
0O 0000000 O0O0
0O 0O0OO0O0OO0O0O0OO0O0
OO0 000000 O0O0
00000000 O0O0
OO0 O0OO0O0OO0O0O0OO0O0
00000000 O0O0
0000000 O0OO0O0
0O 0O0OO0O0O0OO0O0OO0O0
O 0000000 O0O0

\

(a) Cross sections (b) Spatial discretization of a cross section

Model as two-dimensional grids
« Discretize in space and time
 finer spatial and femporal resolution enables greater accuracy

Many different computations per time step
« Concurrency across and within grid computations

« We use one-dimensional grids for simplicity

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sequential version as the baseline

« A sequential program main5.c and the execution result

« Computations in blue color are fully parallel

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = ©;
while (!done) {
float diff = 0.0;
for (i=1; i<=N; i++) {
B[i] 0.333 * (A[i-1] + A[i] + A[i+1]);
diff = diff + fabsf(B[i] - A[i]);

}
if (diff <TOL) done = 1;
for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

int main() {
int i;
for (i=1; i<N-1; i++) A[i] = 100+i*i;
for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);
printf("¥n");
solve();

mainb.c sequential program

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

0.00 101.00 104.00 109.00 116.00 125.00 136.00 ©0.00 0.00 0.00
0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76
0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50
0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.99 24.62 0.00 | diff= 22.12
0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06
0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26
0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
0.00 21.59 4@.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
i=4 i=8
+ +
A A[O]| | A[11|| A[2]| | A[31|| A[4]| | A[B]| | A[6]| | AL71| | A[8]] | AL9]
+ +
B B[1] || B[2]||B[3]||B[4]||B[B]||B[6]]||B[7]]|B[8]

Decomposition and assignment

 Single Program Multiple Data (SPMD)

« Decomposition: there are eight tasks to compute B[]
« Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
int ncores = 2;

void solve_pp (int pid) {
int i, done = 9;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);

3k

}
diff = diff + mydiff;

if (diff <TOL) done = 1;
if (pid==1) diff = 0.9;
for (i=mymin; i<=mymax; i++) A[i] = B[i];

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve_pp(9);

=) create thread2 and call solve_pp(1l);

/* private variables */
/* private variable
rivate variable

*/
*/

P =22
SIS

Computation for B[]

Decomposition

B[1] || B[2]||B[3]||B[4]||B[5]||Bl6]||B[7]||B[8]
Assignment
pid = O, ncores = 2 pid = 1, ncores = 2
Core 1 Core 2
B[1] || B[2]||B[3]|]| B[4] B[51||B[6]||B[7]]||BI8]
mymin = 1 mymin = 5
mymax = 4 mymax = 8
TOKYO TECH 10

Orchestration

LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

BARRIER ensures all reach here

@

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
int ncores = 2;
pthread_mutex t m = PTHREAD _MUTEX_ INITIALIZER;
pthread_barrier_t barrier;
void solve pp (int pid) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i
mydiff = mydiff + fabsf(B[i] - A{1]);

/* private variables */
/* private variable */
/* private variable */

}

pthread_mutex_lock(&m);
diff = diff + mydiff;
pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier)s

if (diff <TOL) done = 1;

pthread _barrier wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] =
pthread_barrier_wait(&barrier);

B[i];

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

e

After all cores update the diff,
"~ if statement must be executed.

if (diff <TOL) done = 1;

11

TOKYO TECH

Parallel program after orchestration

% gcc main6.c -00 -lpthread -1m -o a.out6

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#tdefine N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_barrier_t barrier;

int main(){
pthread_t t1, t2;
int pide = o;
int pidl = 1;
for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);
pthread_create(&t1l, NULL, (void *)solve_pp, (void*)&pid@);
pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pidl);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

for (int i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("¥n");
return 0;

void solve pp (void *p) {
int pid = *(int *)p;
int i, done = ©;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0.0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);

/* private variables */
/* private variable */
/* private variable */

}
pthread_mutex_lock(&m);

diff = diff + mydiff;
pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;
pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
pthread_barrier_wait(&barrier);

main6.c parallel program

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency
* Main memory and caches

\

« Caches are used to reduce latency and to lower network traffic

* A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

e Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
meChGniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZaT io n | ; In’zrconnec’rion nef;work .
v v
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency

()
[]
[]
[]
®
System
Chip
[]
Core Core Core Cor
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
| Interconnection network
))
\ 4 \ 4
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

14

Performance metrics of interconnection network X
\

* Network cost

* number of links on a switch to connect to the network (plus
one link o connect to the processor)

« width in bits per link, length of link
« Network bandwidth (NB)
 represents the best case
« bandwidth of each link x number of links

« Bisection bandwidth (BB)

* represents the worst case

« divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Bus Network

* N cores (
« Only 1simu
« NB (best case) = link (bus) bandwidth x 1

« BB (worst case) = link (bus) bandwidth x 1

« All processors can snoop the bus

The case where core B sends a packet to someone

<

A

3

), N switch (O), 1link (the bus)
taneous transfer at a time

B

3

C

o &

E

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

3

B

C

P ©

Core or processor node

D

3

5‘

5

A

Exercise 1

 Bus Network with multiplexer (mux)
* one N-input mux for N cores

« Draw the bus network organization of 4 cores using a 4-
Input mux.

\

17

Ring Network x
\

* N cores, N switches, 2 links/switch, N links
« N simultaneous transfers

« NB (best case) = link bandwidth x N

« BB (worst case) = link bandwidth x 2

« Ifalinkis as fast as a bus, the ring is only twice as fast as a bus in the
worst case, but is N times faster in the best case

A G

G

The case where & = < > =
A ->F,B->A, C->B, F->D }_L A }_I ﬁ\ il

NS

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Cell Broadband Engine (2005)

« Cell Broadband Engine (2005)
« 8 core (SPE) + 1 core (PPE)
« each SPE has 256KB memory
« PS3, IBM Roadrunner (12k cores)

PlayStation3
from PlaySation.com (Japan)

PPE SPET SPE3| SPES| SPE7| 10IF1 =
T | [e L
¥ . : %
f [B g W
7 o
Data network Data bus arbiter | o -
3 2 A3
- - - < : .
- o - »
- - - = T E:
w -
© EZ
c “ -
i 1] . 5 1B
= o N
MIC SPEO SPE2) SPE4| SPES EIIF g 20
S
10IFO & :
% o
o

BIF Broadband interface
10IF /O interface

Figure 2. Element interconnect bus (EIB).

TEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Xeon Phi (2012)

T e ——— ——

Intel® Xeon Phi™ Coprocessor Block Diagram

PCle I/0

Table 2. Intel® Xeon Phi™ Product Family Specifications

FORM PEAK DOUBLE | PEAK MEMORY INTEL"
PRODUCT FACTOR &, BOARD NUMBER FREQUENCY | PRECISION MEMORY CAPACITY TURBO
NUMBER THERMAL TDP (WATTS) | OF CORES | (GHz) PERFORMANCE | BANDWIDTH | (GB) BOOST
SOLUTION* {GFLOP) (GB/s) TECHNOLOGY
I20P PCle, Passive | 300 1.1 1003 240 B MR
3120A PCle, Active | 300 57 11 1003 240 B NY/A
5110P PCle, Passive | 225 &0 1.053 1071 320 B MR
Dense form
51200 factor None | 245 60 1.053 1om 352 8 N/A
7110P PCle, Passive | 300 61 1.238 1208 352 16 Peak turbo
frequency:
7120% FCle, None 300 &1 1.238 1208 352 16 1.33 GHz

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Fat Tree (1)

« Trees are good structures. People in CS use them all the
time. Suppose we wanted to make a tree network.

« Any time A wants to send to C, it ties up the upper links, so
that B can't send to D.

* The bisection bandwidth on a tree is horrible - 1 link, at all

times

« The solution is to "thicken' the upper links.
* More links as the tree gets thicker increases the bisection

bandwidth

A

B

C

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

N = 4

\

21

Fat Tree i\%

* N cores, log(N-1) x logN switches, 2 up + 4 down = 6
links/switch, N x logN links

* N simultaneous transfers
« NB = link bandwidth x N log N
BB = link bandwidth x 4

DS

N=4 N=38

K CSC.T433 Advance d Computer Architecture, Department of Computer Science, TOKYO TECH 22

Crossbar (Xbar) Network

N
N
N

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

cores, N? switches (unidirectional), 2 links/switch,

2 links

simultaneous transfers
NB = link bandwidth x N (best case)
BB = link bandwidth x N (worst case)

91919 [0
91919 9

A 4

91919 19
clclclE

" D

A

Crossbar telephone exchange &
of1903 for four subscribers
(vertical bars), having four cross-
bar talking circuits (horizontal
bars), and one bar to connect the
operator (T). The lowest cross-bar
connects idle stations to ground to
enable the signaling indicators (F).
The switch is operated manually
with metal pins that create a
connection between the
horizontally and vertically arranged
bars.[1]

Wikipedia 23

Crossbar (Xbar) Network with mux

—

N N-input multiplexers

)
A Fe—
1 ——]A
A\,
)
® >
5 = | B
>
N
)
® >
[3 >
C * > 2 C
>
N
)
D
D ——eo—
N

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A symbol of Xbar

24

Mesh Network

* N cores, N switches, 5 links/switch

« N simultaneous transfers
NB = link bandwidth x N (best case)
BB = link bandwidth x N2 (worst case)

N =4 N = 16

K CSC.T433 Advance d Computer Architecture, Department of Computer Science, TOKYO TECH

25

2D and 3D Mesh / Torus Network

Torus

26

Intel Single-Chip Cloud Computer (2009)
\

« To research multi-core processors and parallel processing.

Inside the SCC

Dual-core SCDC Tile

L2 Cache

q1° 24Tiles
@=] - 24 Routers - |5
= 48 IA cores -

ROUTER

L2 Cache

« 2D mesh network with 256
GB/s bisection bandwidth

* 4 Integrated DDR3 memory
controllers (64GB addressable)

o
w
—J
-
(=)
o
-
=
o
o
>
o
o
=
w
=

A many-core architecture
with 2D Mesh NoC

Intel Single-Chip Cloud Computer (48 Core)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Epiphany-V: A 1024 core 64-bit RISC SoC (2016)

ey,

North IO

RISC -
cpy NOC

MEMORY

RISC

ac
cPU NOC

MEMORY

Summary of Epiphany-V features:

1024 64-bit RISC processors

64-bit memory architecture

64/32-bit IEEE floating point support

64MB of distributed on-chip memory

1024 programmable 1/0 signals

Three 136-bit wide 2D mesh NOCs

2052 Independent Power Domains

Support for up to 1 billion shared memory processors
Binary compatibility with Epiphany IIT1/IV chips

E L w

RISC

CPU NOC

MEMORY

RISC

CPU NOC

MEMORY

-

Function

Value (mm~2)

Share of Total Die Area

SRAM

Register File

FPU

NOC

10 Logic

“Other” Core Stuft
10 Pads

Always on Logic

62.4
15.1
11.8
12.1
6.5
5.1
3.9
0.66

53.3%
12.9%
10.1%
10.3%
5.6%
4.4%
3.3%
0.6%

Table 5: Epiphany-V Area Breakdown

Custom ISA extensions for deep learning, communication, and cryptography

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Skylake-X, Core i9-7980XE (2017)

« 18 core
« 2D mesh topology

S

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Xeon Scalable Processor

New Mesh Interconnect Architecture

Broadwell EX 24-core die Skylake-SP 28-core die

0 P O 0
0 P
SKX Core SKX Core | I SKX Core SKX Core | | SKX Core SKX Core
DDR4
DDR 4
SKX Core II SKX Core DDR 4
CHA/SF/LLC
SKX Core | SKX Core SKX Core
} SKX Core SKX Core | l SKX Core SKX Core I I SKX Core SKX Core
| O W W T
e = L= 4
SKX Core SKX Core | l SKX Core SKX Core I | SKX Core SKX Core

CHA - Caching and Home Agent ; SF- Snoop Filter; LLC- Last Level Cache;
SKX Core - Skylake Server Core; UPI| - Intel® UltraPath Interconnect

Intel Press Workshops - June 2017 Content Under Embargo Until 1:00 PM PST June 15, 2017

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Bus vs. Networks on Chip (NoC) of mesh topology
. —_— .y, . B

intersection

\

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Typical NoC architecture of mesh topology
e e —_— .y, = — \

« NoC requirements: low latency, high throughput, low cost

* Packet based data transmission via NoC routers and
XY-dimension order routing

PM PM PM PM

0,3 1,3 2,3
w Packet
(tag + data)

PM: Processing Module or'Core,
R: Router

Packet organization (Flit encoding) X
\

A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

A packet has one head flit and some body flits.
For simplicity, assume that a packet has only one flit.
Later we see a packet which has some flits.
Each flit has typical three fields:
Payload (data)
Route information Packet (fag + data)
Virtual channel identifier (VC)

Flit Route info VC Payload

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

Packet organization (Flit encoding)

A
A flit (flow control unit or flow control digit) is a link-level %%

atomic piece that forms a network packet.
A packet has one head flit and some body flits.

Each flit has typical three fields:
payload(data) or route information(tag)
flit type : head, body, tail, etc.

virtual channel identifier

Head flit /e

Type

Route info

Body flit | VC

Type

Payload

Head and body flit formats

™

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Packet (tag + a‘ra)

34

Routing
Dy,

Y

—

e —

« XY dimension order routing (DOR), and YX DOR

51

D2

52

| PP

53
Y
Y Dl D3
X (a) XY routing

Dl D3

(b) Y X routing

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple NoC router architecture

« Routing computation for XY-dimension order

Node (3, 3)

Flit Route info vC Payload Packet from

node (1, 3) to
node (3, 1)

N (Y-) Node (3, 3) N (Y-)

E (X+) E (X+)

S (Y+) S (¥+)

W (X2) dest (3,1) W (X0)

PM PM

(Module) (Module)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

NoC router

Simple NoC router architecture
ey, ——— ——

 Buffering and arbitration
 time stamp based, round robin, etc.

N (Y-) FIFO N (Y-)
E (X+) TTTY . ?(X*‘)

Y+ Y+
50 LT 4 % 50N -~ E
e (T / Wea e AN R
PM PM
(Module) LTI ‘ ({V\odule)

ﬁ NoC router
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple NoC router architecture

« Flow control (back pressure)

« When the destination router's input buffer
is full, the packet cannot be sent.

N (Y-) N (Y-)
([[T1 >
E (X+) E (X+)
([[T] >
S (Y+) S (Y+) N (Y-)
([T T] 1 X T TH—
/ FIFO full?
W (X-) W (X-)
([T T[]
PM PM
(Module) (Module)

South router

@’ NoC router
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple NoC router architecture

« Problem: Head-of-line (HOL) blocking
« The first (head) packet in the same buffer

blocks the movement of subsequent packets.

N (Y-)

(TTT]

N (Y-)

E (X+)

S (Y+)

E (X+)

W (X-)

S (Y+)

N (Y-)

W (X-)

PM
(Module)

FIFO

PM
(Module)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

NoC router

FIFO full?

South router

Two (physical) networks to mitigate HOL ?

N (Y-)

E (X+)

S (Y+)

W (X-)

PM

(Module

HOL blocking

— (- - -

B iy MR
N o g
i iy R
D T

N (Y-)

E (X+)

S (Y+)

FIFO full

W (X-)

PM

Simple NoC router

K CSC.T433 Advanced Computer Architecture,

(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-) HOL blocking
— (T T+
E (X+) \
N
S (Y+) T
X
N (Y-) HOL blocking N (Y-
— T - -, =
‘\
+ \ +
2 | =
\
\
\
20— Vo2
X FIFO full
W (X- W (X-
T <
PM PM
(ModuleLEl:l:D (Mod:ule)

Department of Computer Science, TOKYO TECH

40

Datapath of Virtual Channel (VC) NoC router

« To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-) N (¥-)
— (T — =
X
E (X+) E (X+)
—{ [T }F— -
S (Y+) S (¥+)
[TTTF—— f--Fom
) FIFO full
. /
W (X) HOL blicl«f% I, W (>:<-)
PM PM
(Module) (Module)
—{ [T [}F— -

<

Simple NoC router

Flit

Route info Ve

Payload

N (Y-)

(T vCco
vel
[T T T

E (X+)

I:l:l:l:‘ vca2

S (Y+)

W (X-)

PM
(Module)

——

N (Y-)

E (X+)

S (Y+)

—_

FIFO full

W (X-)

PM

(Module)

VC NoC router

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

41

Bus vs. Networks on Chip (NoC) of mesh topology
S R —— ———

To mitigate
head-of-line (HOL) blocking

Virtual Channel

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Pipelining the NoC router microarchitecture

=5 Stage 1 | Stage 2 | Stage3 | Stage 4 | Stage 5 g2
L c =
o < Input buffers I I I I | output buffers - =8
£5123] | gPImn, ! I ! LI RE g Y TR g
—> S £ = |2 I] | ™ (2> 55
= b | ! | | S (R
L I I I % I 5T
S 2 I I | 3 | 8 =
= Input buffers | | | G I | Output buffers T 2
£6|28| | 0> ! ! ! | gE - Bl
—| £ £ (8>3 | | o it
@)
LU I Routing Control Unit I I I ~
outing Control uni - -
, Header , Arbﬁ;?ttlon LN :
| riit _ | I Crossbar '
I Output I Control |
I Forw.Table | Port # | |
IB (Input Buffering) RC (Route Computation) SCC(IS\"{",‘CC'L‘:;;’) ST (Switch Traversal) OB (Output Buffering)
Head flit [IB|RC|SA|ST | OBJ L
Bodly flit B|B|B|sToBll | |
BT Tt 1
_l |
Body flit IB|IB|IB|ST|OB It'
Body flit B|B|B|sT|oBll |

-

“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,

Proc. of the 7th Int'| Symposium on High Performance Computer Architecture, January, 2001.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

=

43

Typical NoC architecture of mesh topology
e e —_— .y, = — \

« NoC requirements: low latency, high throughput, low cost

* Packet based data transmission via NoC routers and
XY-dimension order routing

PM PM PM PM

0,3 1,3 2,3
w Packet
(tag + data)

PM: Processing Module or'Core,
R: Router

Bus vs. Networks on Chip (NoC) of mesh topology
. —_— .y, . B

Distributed system

[ITTT]

- g NS - i = !
< B pC ~ . -~
N s ’ . y L
My B P “ £ - ~
Oy s <> .
b - o .
- ~_ .
FIFO % AP, W
‘ 5 \A = -

Intfersection
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Average packet latency of mesh NoCs

« b stage router pipeline
« Uniform traffic (destination nodes are selected randomly)

Saturation
200 1 XY 800
-%-YX
150 4 -*-LEF 600

—— LEF++

Avg. packet latency (cycles)
=
=

Avg. packet latency (cycles)
b

30 A 200 -
D T I T T 1 U T T T T 1
0.00 007 0.14 021 028 035 0.00 0.0 002 003 004 0.05
Injection rate (flits/node/cycle) Injection rate (flits/node/cycle)
(a) Average packet latency under uniform traffic (a) Average packet latency under uniform traffic
8x8 NoC 64x64 NoC (4096 nodes)
@ Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip,
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 46

Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency

()
[]
[]
[]
®
System
Chip
[]
Core Core Core Cor
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
| Interconnection network
))
\ 4 \ 4
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

47

Bus Network with multiplexer (mux)

 ohe N-input multiplexer for N cores

<

A

q L 4

VVYVYY

D

The bus network organization of 4 cores using a 4-input mux.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

:

[
»

A

D

48

