
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

10. Multi-Processor: Distributed Memory and
Shared Memory Architecture

Ver. 2024-01-22aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Instruction
window

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB
(reorder buffer)

• The last stage is called retire or graduate.
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from x0 to x31.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end

Out-of-order back-end

In-order retirement
RF

ROB

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Datapath of OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

The Memory System’s Fact and Goal

• Fact:
Large memories are slow, and fast memories are small

• How do we create a memory that gives the illusion of being
large, fast, and cheap ?

• Temporal Locality (Locality in Time):

• Keep most recently accessed data items closer to the
processor

• Spatial Locality (Locality in Space)

• Move blocks consisting of contiguous words to the upper
levels

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

proc9: 5-stage pipelining processor

• The strategy is to separate instruction fetch step (IF), instruction decode
step (ID), execution step (EX), memory access step (EX), and write back step
(WB).

• Use the pipeline register P3 between EX and MA, and pipeline register P4
between EX and WB.

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
32’h4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

m8

m
u
x

1

0 P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
P3_alu

w
_
l
d
d

P4_ld

P
3
_
s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P4_s &
!P4_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P3_rd

IFID_ir [11:7]

w
_
t
p
c

EX stage

32

P4_rd

P4
WB stage

P
4
_
l
d
d

P
4
_
a
l
u

m
u
x1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

32

P3
MA stage

w
_
a
l
u

P2_r2
P
2
_
r
d

P
3
_
i
n
3

P3_alu

2

m
u
x1

0

2

m13

w_m13

m
u
x1

0

2

w
_
i
n
3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

8

Index

Data (4 word)
Index TagValid

0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.

• When a miss occurs,
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
• Must have hardware to keep track of when each way’s block was

used
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

• Random

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Exercise 1

E F G H

A B C D

Bookshelf

Desk

Book

Cache Associativity & Replacement Policy

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science

• MICRO-40, pp. 445-454, 2007

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to narrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
creative procrastination

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Datapath of OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Instruction window

Multiprogramming

• Several independent programs run at the same time.

Instruction window
(c)

Instruction window

8 5

7

6

4

Instruction window
(d)

Instruction window

program A (Thread A)

program B (Thread B)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Multithreading (1/2)

• During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

• interrupt, exception, or OS call

• Executing multiple independent threads (programs) will mitigate the overhead.

• They are called coarse-grained and fine-grained multithreaded processors
having multiple architecture states.

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Multithreading (2/2)

• Simultaneous Multithreading (SMT) can improve hardware resource
usage.

http://www.realworldtech.com/alpha-ev8-
smt/

http://www.realworldtech.com/alpha-ev8-smt/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions

1

Instruction windowIF ID Renaming

8

10

13

14

Cycle 1
15

16

1

2

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program B

Newer instructions

1

12 11 10 9 8 7 6 5 4 3 2ROB RF

Instruction windowIF ID Renaming

8

10

13

14

Cycle 2
1

2

1

2

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

12 11 10 9 8 7 6 5 4 3 2ROB RF

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions

1

Instruction windowIF ID Renaming

8

10

Cycle 3
11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program B

Newer instructions

1

12 11 10 9 8 7 6 5 4 3 2ROB RF

Instruction windowIF ID Renaming

8

10

Cycle 4
3

4

1

2

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 2 1ROB

Retire

1

RF

12 11 10 9 8 7 6 5 4 3 2ROB RF

1

2

1

2

3

4

1

2

3

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions

1

Instruction windowIF ID RenamingCycle 5 Issue Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 2 1ROB

Retire

1

RF

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program B

Newer instructions

1

12 11 10 9 8 7 6 5 4 2 1ROB RF

Instruction windowIF ID Renaming

8

10

Cycle 6
3

4

2

9

Issue

1

2

Execute

1

Commit

2

12 11 10 9 8 7 6 4 3 2 1ROB

Retire

1

RF

12 11 10 9 8 7 6 5 4 2 1ROB RF

8

10

3

4

1

2

2

9

1

6

3

4

5

6

3

4

5

6

5

6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions

1

Instruction windowIF ID RenamingCycle 7 Issue Execute Commit

12 11 10 9 8 7 6 4 3 2 1ROB

Retire

RF

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program B

Newer instructions

1

12 11 10 9 8 7 6 4 3 2 1ROB RF

Instruction windowIF ID Renaming

8

10

Cycle 8
5

6

4

9

Issue

3

4

Execute

3

2

Commit

1

2

12 11 10 9 8 6 5 4 3 2 1ROB

Retire

RF

12 11 10 9 8 7 6 4 3 2 1ROB RF

8

10

3

4

4

9

3

2

5

6

5

6

7

8

7

8

1

2

1 1

1

2

5

6

7

8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

Intel Sandy Bridge, January 2011

• 4 to 8 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

2021.11 Intel Alder Lake processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 34

2022.11 AMD EPYC 9654 processor with 96 cores

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 35

Distributed Memory Multi-Processor Architecture

• A PC cluster or parallel computers for higher performance

• Each memory module is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data
required.

• Who will send and receive data? How?

PC2 PC3 PC4PC1

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Interconnection network

Memory
(DRAM)

Proc3

Caches

Memory
(DRAM)

Memory
(DRAM)

Memory
(DRAM)

PC cluster

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 36

Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?

System

Interconnection network

Main memory (DRAM) I/O

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 37

System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an
interconnection network.

• The shared memory or shared address space (SAS) is used as a means
for communication between the processors.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 38

The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architecture

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 39

Instruction window

Parallel programming

• Several dependent threads run at the same time on a multi-processor
(many-core) system.

Instruction window
(c)

Instruction window

8 5

7

6

4

Instruction window
(e)

Instruction window

thread A

thread B
data dependency

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 40

Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func2, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –o a.out1
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 41

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0. Preparing an optimized sequential program (baseline)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 42

Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 43

Sequential version as the baseline

• A sequential program main01.c and the execution result

• Computations in blue color are fully parallel

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32

0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76

0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50

0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68

0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88

0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80

0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12

0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06

0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26

0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47

0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70

0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95

0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23

0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53

0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85

0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20

0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x

A[0] A[9]

i=4

+, +, x

i=8

A

B

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 44

Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]

• Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;

create thread1 and call solve_pp(1, 2);

create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 45

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

LOCK();

diff = diff + mydiff;

UNLOCK();

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

BARRIER();

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 46

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

