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Instruction pipeline of OoO execution processor

3
* Allocating instructions to instruction window is called dispatch 2%
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate.
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from x0 to x31.

Instruction
window
eteh | Decode ::r?;fr:rii; Dl Out-of-order back-end
In-order front-end Issue E&‘Z;‘ffy/ Commit
I
ROB[ [ [ [ T [T T [T T[] NAlC

ﬁ’ In-order retirement [
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Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥  —
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Reorder buffer (ROB)
= Register dataflow

A
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Data cache |
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The Memory System's Fact and Goal %\%
\

* Fact:
Large memories are slow, and fast memories are small

* How do we create a memory that gives the illusion of being
large, fast, and cheap ?

« Temporal Locality (Locality in Time):

« Keep most recently accessed data items closer to the
processor

 Spatial Locality (Locality in Space)

« Move blocks consisting of contiguous words to the upper
levels
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A Typical Memory Hierarchy

\
By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology L
R ———————————— T S
On-Chip Components =T )
Control .-
: j %C} = Second Secondary
1"kl | 3¢ Level Memory
Datapath [ Z|| — == Cache (Disk)
3l Bl | &9 (SRAM)
ol B 3"
Speed (%cycles): Y2's 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s GstoT’s
Cost: highest lowest

ﬁw TLB: Translation Lookaside Buffer
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proc9: 5-stage pipelining processor

\

« The strategy is to separate instruction fetch step (IF), instruction decode \
step (ID), execution step (EX), memory access step (EX), and write back step
(WB).

« Use the pipeline register P3 between EX and MA, and pipeline register P4
between EX and WB.

IF stage ID stage EX stage MA stage WB stage
P1 P2 P3 P4
I I w_mll _ _
IFID_ir - LI ‘1’
H-npe [19:15], ral w_rl a mllf_\;
32°h4 IDIF_ir rd1 [ —
24:20 3
(222005) a2 Irg&! 1< P3_alu R
— 2 7
P3_rd %
- m2 i) wa w_r2 :| —/ adr —
IP4_s & rd2 o ?. 9, —
< m
< o | 1Pab rd >
- o —> :j "> 1§ Sl we §
am_ _3> a RF2 3 o ] (.
imem m5 \/f/ 2| am_
o
r,i,s,b,u,q,1d W m12 2' dmem
m3 (gen_imm) || Pr— m9
1 w_imm - P3_rd Pa_rd
IFID_ir [11:7] {:I T::> I:I
_ : 8]
—> f}l —| 5 m13
P1_pc +| = = w_mi3
— P2_tpc mé —_—‘ P3_alu — _—
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MIPS Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB) X
Byte
3130 1312 11 ... 210
K/ offset
Hit Tag 20 10 Data
t Index 4
Index Valid Tag Data

0
1
2

— ?

1021 I
1022
1023

~~20 <132
) @VJ What kind of locality are we taking advantage of?
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Multiword Block Direct Mapped Cache

« Four words/block, cache size = 1K words (4KB) \
H|t 3130 ... 1312 11 ... 4321 C‘)(/E?:/ftseet Data
Tag ~20 18 Block offset
Index
Data ( 4 word )
Index Valid Tag < >
0
1
2
253
254
255
420

; \ 4 v \ 4 \ 4
U )
N

"32
Sy What kind of locality are we taking advantage of?
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Four-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with four ways (each with one block)

\

3130 1312 11 21 O/Byte Oﬂ:set
X
(22 .8
Index
IndexV Tag V Tag V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
— Y ' Y ' ° ? ' Py )
253: 253 253 253
254 254 254 254
255 255 255 255
(— ) > — ) :’:\ —
J U

> 4x1 select

Hit
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Costs of Set Associative Caches

 When a miss occurs,
which way’s block do we pick for replacement ?

* Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

*  Must have hardware to keep track of when each way’s block was
used

« For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

 Random

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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Exercise 1
N

Cache Associativity & Replacement Policy

E F G H
Book
Bookshelf
Al Bl c|D
@
Q\/)\L
W“ Desk



Recommended Reading
\

« Emulating Optimal Replacement with a Shepherd Cache

 Kaushik Rajan, Govindarajan Ramaswamy, Indian Ins’rl‘ru’re of
Science

« MICRO-40, pp. 445-454,2007
 Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."
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Memory Hierarchy Design

\ — 4—\ — —
Memory Hierarchy
Fp— L2 and lower caches

@ Objective : Need to reduce expensive
memory accesses

@ Design : Large size, Higher associativity,

CONFLICT - MITENTTY. g
sasses, ([ e Complex design
w.‘\-\. f.-'hcmm
INTERACTION |

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁ Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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LRU has room for improvement
T— ——— ———— —e —

LRU vs OPT

© |Es1zke-lru1s B 512k84ruFa [ 256KB-0pts [ 512KB-opti6

I [0/ 100 O mmmm

D_

aart mcf gee luca swim applr’ﬁﬁjmp twulf‘ vpr-i'_'_-f_ﬁ;:-éﬁrﬁgrid ap%i?:avgzﬁ

MPKI

for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

<

MPKI: Miss Per Kilo Instructions Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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OPT: Optimal Replacement Policy
T ——— —_— .y, — o

<

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current

cache state [Sugumar-SIGMETRICS1993]

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Example of Optimal Replacement Policy
e

T

—

gy -

Ty,

Understanding OPT

AW ‘A IA A JA A A TA A A LA
Access Sequence 5)%1; 6/ 3171 45T 21T s T e g
OPTorderfor Asf" (g ! {1} ioi3iaf | |

i i Lo I i I I I —
DPImﬂmfnr%j Co o223y b4

@ Consider 4 way associative cache with one set initially containing lines
(41,42 43 _44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates : (4y 45 A3, 44.45)
& Lookahead and gather imminence order - shown in table,
lookahead window circled

) Make replacement decision : A4s replaces A
@ Ag self-replaces, lookahead window and imminence order in table

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache emulation OPT
e,

Emulating OPT with a Shepherd Cache

FPROCESSOR

Shepherd| |
Cache

MEMORY

@ Split the cache into two logical parts

@ Main Cache (MC) for which optimal
replacement is emulated

@ Shepherd Cache (5C) used to provide a
lookahead and guide replacements from MC
towards OPT

@ Operation

& Buffer lines temporarily in SC before moving
them to MC,. SC acts as a FIFO buffer

@ While in SC, gather imminence information and
emulate lookahead

& When forced out of SC, make an MC
replacement based on the gathered imminence
order

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache Overview

S

Overview of Shepherd Caching

NV, | NV,

SC,
SC)

MC | Ag

CM

"I'E,ﬁl,*ﬂ‘“ﬁ,ﬂlﬁl,ﬁi

|
I
|
I
|
|
|
|
|
|
I
|
A..j |
|
|
|
|
|
|
|
|
I
|
I
|
|

Ag Ay As A7 AgAg |

Ty, - ——

To emulate MC with 4 ways per set and 2 SC
ways per set

To gather imminence order add a counter
matrix (CM)

CM has one column per SC way to track
imminence order w.r.t to it

CM has one row per SC and MC line as any
of them can be a replacement candidate

Each column has one |[Next Value Counter
(NVC) to track the next value to assign along
column

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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l-.-xi.-x|_.a.ﬁ_.a.3_.a.|_.a.4_ Aj A Aha.3p.l,ﬁ.4
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! 1 1 1 1
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s | S0y e Ni\s, e |1 scfAg 0] e[ N\OsC,[ Ay 0fe | SOAL Ole| i
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! 1
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(a) Initial State (b} As insered
at Sy

NYCs MY (s

1
! 1
! 1
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1
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1
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Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd cache bridges 32 - 52% of the gap

S

Bridging the performance gap

Average MPKI

T

—

m lru=-1s (JB)
¢ sc-12(136E)
¥ sc-8 (92E)
& go-A ([T1E)
B co-4 (488)
4 so-2 [25E)
M opt=16 (=)

S12KB

1MB 2MB 4MB

Avg MPKI over SPEC2000 suite

p —

Ty,

Bridging the LRU-OPT gap
@ SC-4 bridges 32-52%
of gap
@ SC moves closer to

OPT as cache size
increases

MPKT: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥  —
LIt LIttty CIiI1i] [L11T]] LI TTT] [ITTT1]|Inhstructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer (ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

A 4

Data cache |
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Multiprogramming

« Several independent programs run at the same time.

Instruction window
| J[8][6][5]
L L el 7]

Instruction window

pr'ogr'am A (Thread A) Instruction window

) I O

pr'ogr'am B (Thread B) Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH




Multithreading (1/2)
\

« During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

 interrupt, exception, or OS call
« Executing multiple independent threads (programs) will mitigate the overhead.

* They are called coarse-grained and fine-grained multithreaded processors
having multiple architecture states.

Thread 1 S context switch code Thread 2
Processor
Intermapt, esccephion, ox OF call returm from excephon T
Thread 1 Thread 2 Thread 3 Thread 1
Coarse-grmned
Mult.lthreaded
Cache reuss Cache nuss ? Cache muss ?
Execution Fine- grmned
Units | » Time Mulhthreaded

@@;SC.T%‘? Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 23



Multithreading (2/2)

usage.

Simultaneous Multithreading (SMT) can improve hardware resource

Thread 1 OS5 context switch code Thread 2
Processor
Irtermypt, socepton, or OF r:a.ll reham fromm excephon T
B) Thread 1 Thread 2 Thread 3 Thread 1
Coarse-grained
Multithreaded
(ChT)

Cache niss

s EEEQIEEEEHEIE!E@!I

Cache nuss T Cache nuss T

s [|OEMAgRRE A ARARNRE

(SMT)

Execution
Units

L’ Time

Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support

g CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 24
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Simultaneous multithreading (SMT)

Cycle 1

Cycle 2

IF ID Renaming Instruction window Issue | Execute | Commit Retire
() O | O] O » ) O L
() O | OO O » ) L

ROB
ROB

IF ID Renaming Instruction window Issue | Execute | Commit Retire
[ O | e O O~ R | e L
L DI O ) L

ROB| | | | | | HEEN N
RoB[ | | | | | I

Instructions to be executed of program A

Newer instructions

| |18|17]16]15]14|13]12]11|10| 9|8 |7 |65 |4 |32 1]

Instructions to be executed of program B

™

=1

Newer instructions
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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Simultaneous multithreading (SMT)

Cycle 3 IF ID Renaming Instruction window Issue | Execute | Commit Retire
L LT L e L L L
L LI L »L ] [ ]
ROB
ROB
Cycle 4 IF ID Renaming Instruction window Issue | Execute | Commit Retire
I PO e - R L
L L L 2] (I »00] [ |
RoB| | | | | | | [ | J2f1] |
roB| | | | | [ [ | [ | [ 1|

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions
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Simultaneous multithreading (SMT)

Cycle 5 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(L 2] ] >L 1 L[ L
(6] [4 E (20 [ ]
ROB 2|1
ROB 2] 1
Cycle 6 IF ID Renaming Instruction window Issue | Execute | Commit Retire
HNEE > [ L
[6]] [e] [ L L[] > [ |
RoB| | | | | | | [4]3]2]1] |
RoB| | | | | | | | | J2f1] |

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions
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Simultaneous multithreading (SMT)

Cycle 7

Cycle 8

IF ID Renaming Instruction window Issue | Execute | Commit Retire
EENE >
[6]] Le] 4 2 [ ] ]

ROB 4[3]2]1
ROB 4]3]2]1
IF ID Renaming Instruction window Issue | Execute | Commit Retire
N >
[e ]| | L L[ _J[e] B
RoB| | | | | Je[5[4]3[2]1] |
roB| | | | | | | J4f3f2f1] |

Instructions to be executed of program A

Newer instructions

|18 [17|16|15]14 13|12 11]10]| 9|8 |7 |6 |54 [3 |2 ] 1]

Instructions to be executed of program B

™

=1 |

Newer instructions

|18[17|16]15[14]13|12|11]10] 9|8 |7 |6 |54 [3]2]|1]

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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Datapath of SMT Oo0O execution processor

Instruction cache

'

Branch handler It

\ 4

Instruction flow

Instruction fetch I

Instruction decode

Renaming I Map table/free tag buffer I |

Memory dataflow

Register file > Dispatch
Integer Floating-point | Memory
RS | ] | ] | ]
L Z L 2 L Z L Z
[(TT111] [CII11] [IITI11] [CIII1]
v v v

v
LITTT] [TTTTI]]||Instructionwindow

v
ALU_|

FP ALU

ALU l Branch I
‘T

|||III|||III||IIII||J

Reor'der' buffer(ROB)

= Register dataflow

Af_a'

A

A 4
L]

Store
queue

v v
Adr gen. I Adr gen. I
A 4

A 4

\ 4

Data cache |

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS)
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From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Intel Sandy Bridge, January 2011
T —— —

* 410 8 core

. Processor
Graphics

i o) 5
assss Memory Controller 1/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

System
Agent &
Memory

Controller

including
DMI, Display
and Misc. 170




Intel Skylake-X, Core i9-7980XE, 2017

« 18 core

S

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH




2021.11 Intel Alder Lake processor

Scalable Client Architecture

Desktop Mobile Ultra Mobile

LGA1700 BGA Type3 BGA Typed4 HDI
Socket 50x25x1.3mm 285x19x 1.1mm




2022.11 AMD EPYC 9654 processor with 96 cores

™ AMDA
A M D E pvc 9 0 0 4 Cores =rPYC Base/Boost* w,uwowm Default TDP (w) cTDP (w)
. 96cores 9654/P 2.40/3.70 360w 320-400w
Series Processor

84 rores

64cores 9554/P  310/375 360w 320-400w
64 cores 2.45/3.70 280w 240-300w

All-in Feature Set support s = R

48cores o
y 200w
« 12 Channels of DDRS-4800 2.75/3.80 240-300w
32 cores 3.85/4.30
Up to 6TB DDRS memory capacity e 9354/P  3.25/380 240-300w

128 lanes PCle® S 32cores 9334 2.70/3.90 200-240w

64 lanes CXL 1.1+ s TR S

24 cores 2.90/415 200-240w
2.50/3.70 200-240w

AVX-512 ISA, SMT & core frequency boost

AMD Infinity Fabric™

AMD Infinity Guard 3.00/3.70 200-240w

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Distributed Memory Multi-Processor Architecture

\
* A PC cluster or parallel computers for higher performance \
« Each memory module is associated with a processor

« Using explicit send and receive functions (message passing) to obtain the data
required.

« Who will send and receive data? How?

PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
A A A A
A4 A 4 A 4 A\ 4
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)

@ 'ZD PC cluster Interconnection network
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 35



Shared Memory Multi-Processor Architecture

« All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

* The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

« What are the means to obtain the shared data?
*  What are the advantages and disadvantages of shared memory?

System
Chip Chip Chip Chip
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Main memory (DRAM) I/0
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Shared memory many-core architecture

« The single-chip integrates many cores (conventional processors) and an

interconnection network.

« The shared memory or shared address space (SAS) is used as a means

for communication between the processors.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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The free lunch is over
T — ... —_— .y, ——— ——

* Programmers have to worry much about performance and concurrency
 Parallel programming & multi-processor (multi-core) architecture

Free Lunch

Programmers haven't The traditional approach
really had to worry to application

much about performance was to
performance or simply wait for the next
concurrency because generation of processor;
of Moore's Law most software

developers did not need

to invest in performance
‘ tuning, and enjoyed a
Why we did not see 4GHz “free lunch” from

processors in Market? hardware
. improvements.

@ 'ZD The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
C
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Parallel programming

« Several dependent threads run at the same time on a multi-processor
(many-core) system.

Instruction window
| J[8][6][5]
L L el 7]

Instruction window

C I I I O O -
thread A Tnstruction window
(e)||||||||||\||| | [ 1]
data dependency N
’rhr‘ead B Ins‘rru}t{on window
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Sample of a wrong parallel program using pthread

% gcc mainl.c -00 -lpthread -o a.outl

% ./a.outl
main: 20000000

\

Single Program Multiple Data (SPMD)

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000

int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

};

int func2(){
int i;
for(i=0; i<N; i++){ a++; }

};

int main(){
funcl();
func2();

printf("main: %d¥n", a);
return 0;

mainl.c
sequential program

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

};

int func2(){
int i;
for(i=0; i<N; i++){ a++; }

}s

int main(){
pthread_t t1, t2;
pthread create(&t1, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)func2, NULL);

#tinclude <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

}s

int main(){
pthread_t t1, t2;
pthread create(&tl, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)funcl, NULL);

pthread join(tl, NULL);
pthread join(t2, NULL);

printf("main: %d¥n", a);

parallel program with funcl and func2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

return 0;
pthread join(tl, NULL); }
pthread_join(t2, NULL);
printf("main: %d¥n", a);
return 0;

}
main2.c main3.c

parallel program with funcl
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Fo

Hw = O

<

ur steps in creating a parallel program

Preparing an optimized sequential program (baseline)
Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors (cores)
Partitioning
|
| |
D ) A Cr) M
c SR ¢ a
o O : :
’ %ﬁs eo i
o} m t
s _>©© e — ™ ; —> ‘ — ° —
; QO t f P — P
; 8@ 0
n n
O
Sequential Tasks Processes Parallel Processors
computation program

Adapted from Parallel Computer Architecture, David E. Culler
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Simulating ocean currents

00000000 O0O0
0O 0000000 O0O0
0O 0O0OO0O0OO0O0O0OO0O0
00000000 O0O0
00000000 O0O0
OO0 O0OO0O0OO0OO0O0OO0O0
00000000 O0O0
0000000 O0OO0O0
O 0O0OO0O0O0OO0O0OO0O0
00000000 O0O0

\

(a) Cross sections (b) Spatial discretization of a cross section

Model as two-dimensional grids
« Discretize in space and time
 finer spatial and femporal resolution enables greater accuracy

Many different computations per time step
« Concurrency across and within grid computations

« We use one-dimensional grids for simplicity

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Sequential version as the baseline

« A sequential program mainOl.c and the execution result
« Computations in blue color are fully parallel

#define N 8 /* the number of grids */ 0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
#define TOL 15.8 /* tolerance parameter */ 0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76
1 : ) 0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.58
oat A[N+2], B[N+2]; 0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
0.00 42.38 76.35 96.92 162.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
void solve () { 0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
int i, done = ©; 0.00 37.88 67.67 87.18 93.34 87.02 70.89 48.99 24.62 0.00 | diff= 22.12
igila (e 4 ©.00 34.88 63.89 82.62 89.86 83.67 68.87 48.89 24.48 0.00 | diff= 21.06
: - 0.00 32.89 66.40 78.44 85.83 86.45 66.81 47.10 24.17 0.00 | diff= 20.26
float diff = @; 0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
for (i=1; i<=N; i++) { 0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]); ©.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
diff = diff + fabsf(B[i] - A[i]); 0.00 26.41 48.89 64.34 71.80 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
©.00 25.87 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
} 0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
if (diff <TOL) done = 1; 0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
for (i=1; i<=N; i++) A[i] = B[i]; 0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */ 1=4 1=8
5 L L
} A | A[01| | Al11|| A[2]| | AL31| | AL41| | ALB] | | Al6]| | AL71] | AL8]| | ALS]
int main() { \l / \l /
for (i=1; i<N-1; i++) A[i] = 100+i*i; Il 1
solve();
} B B[1] || B[2]|| B[3]1|| B[4]]||B[B]||B[6]||B[7]]| | B[8]
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Decomposition and assignment

 Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

void solve pp (int pid, int ncores) { Computation

int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (!done) { Decomposition
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1] || B[2]| |B[31||B[4]||B[5]||B[6]]||B[7]]||BI8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; .
if (pid==1) diff = o; Assignment

for (i=mymin; i<=mymax; i++) A[i] = B[i];

} Core 1 Core 2

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve pp(1, 2);
create thread2 and call solve pp(2, 2);

B[1]||B[2] || B[3]] | B[4] B[5] || B[6]| | B[7]|| BI8]

A }
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Orchestration

« LOCK and UNLOCK around critical section

« Lock provides exclusive access to the locked data. ﬁ

« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

/* private variables */
/* private variable
/* private variable

*/
*/

el

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

}
}
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

45



Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency
* Main memory and caches

\

« Caches are used to reduce latency and to lower network traffic

* A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

e Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
meChGniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZaT io n | ; In’zrconnec’rion nef;work .
v v
Main memory (DRAM) I/0
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