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Instruction
window

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin  

• In commit stage, the computed values are written back to ROB 
(reorder buffer)

• The last stage is called retire or graduate. 
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file 
of 32 registers) using a logical register number from x0 to x31.
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Datapath of OoO execution processor
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The Memory System’s Fact and Goal

• Fact:  
Large memories are slow, and fast memories are small

• How do we create a memory that gives the illusion of being 
large, fast, and cheap ?

• Temporal Locality (Locality in Time):

• Keep most recently accessed data items closer to the 
processor

• Spatial Locality (Locality in Space)

• Move blocks consisting of contiguous words to the upper 
levels 
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A Typical Memory Hierarchy
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Present much memory in the cheapest technology
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proc9: 5-stage pipelining processor

• The strategy is to separate instruction fetch step (IF),  instruction decode 
step (ID), execution step (EX), memory access step (EX), and write back step 
(WB).

• Use the pipeline register P3 between EX and MA, and pipeline register P4
between EX and WB.
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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8
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Data ( 4 word )
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Multiword Block Direct Mapped Cache

• Four  words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?
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Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
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Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.   

• When a miss occurs, 
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time
• Must have hardware to keep track of when each way’s block was 

used 
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced 
(and reset the other way’s bit)

• Random
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Exercise 1
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Cache Associativity & Replacement Policy
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Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of 
Science

• MICRO-40,  pp. 445-454, 2007 

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by 
the L1 cache. As a consequence, an L2 cache with LRU replacement 
incurs significantly higher misses than the optimal replacement policy 
(OPT). We propose to narrow this gap through a novel replacement 
strategy that mimics the replacement decisions of OPT.”
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Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions
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OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
creative procrastination
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Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Datapath of OoO execution processor
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Instruction window

Multiprogramming

• Several independent programs run at the same time.

Instruction window
(c)

Instruction window

8 5
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4

Instruction window
(d)

Instruction window

program A (Thread A)

program B (Thread B)
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Multithreading (1/2)

• During a branch miss recovery and access to the main memory by a cache miss, 
ALUs have no jobs to do and have to be idle.

• interrupt, exception, or OS call

• Executing multiple independent threads (programs) will mitigate the overhead.

• They are called coarse-grained and fine-grained multithreaded processors 
having multiple architecture states.

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/
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Multithreading (2/2)

• Simultaneous Multithreading (SMT) can improve hardware resource 
usage. 

http://www.realworldtech.com/alpha-ev8-
smt/

http://www.realworldtech.com/alpha-ev8-smt/
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Simultaneous multithreading (SMT)
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Simultaneous multithreading (SMT)
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Simultaneous multithreading (SMT)
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Simultaneous multithreading (SMT)
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Datapath of SMT OoO execution processor
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From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Intel Sandy Bridge, January 2011

• 4 to 8 core
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Intel Skylake-X, Core i9-7980XE, 2017

• 18 core
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2021.11 Intel Alder Lake processor
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2022.11 AMD EPYC 9654 processor with 96 cores
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Distributed Memory Multi-Processor Architecture

• A PC cluster or parallel computers for higher performance

• Each memory module is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data 
required.

• Who will send and receive data? How?

PC2 PC3 PC4PC1

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Interconnection network

Memory 
(DRAM)

Proc3

Caches

Memory 
(DRAM)

Memory 
(DRAM)

Memory 
(DRAM)

PC cluster 
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Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory 
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for 
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?

System

Interconnection network

Main memory (DRAM) I/O

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 37

System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an 
interconnection network.

• The shared memory or shared address space (SAS) is used as a means 
for communication between the processors.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017
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The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architecture

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
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Instruction window

Parallel programming

• Several dependent threads run at the same time on a multi-processor 
(many-core) system.
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Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func2, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –o a.out1 
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a++; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a++; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 41

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0.   Preparing an optimized sequential program (baseline)
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Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section
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Sequential version as the baseline

• A sequential program main01.c and the execution result

• Computations in blue color are fully parallel

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

0.00  68.26 104.56 109.56 116.55 125.54  86.91  45.29   0.00   0.00 | diff=129.32

0.00  57.55  94.03 110.11 117.10 109.56  85.83  44.02  15.08 0.00 | diff= 55.76

0.00  50.48  87.15 106.97 112.14 104.06  79.72  48.26  19.68   0.00 | diff= 42.50

0.00  45.83  81.45 101.99 107.62  98.54  77.27  49.17  22.63   0.00 | diff= 31.68

0.00  42.38  76.35  96.92 102.61  94.38  74.92  49.64  23.91   0.00 | diff= 26.88

0.00  39.54  71.81  91.87  97.87  90.55  72.91  49.44  24.49   0.00 | diff= 23.80

0.00  37.08  67.67  87.10  93.34  87.02  70.89  48.90  24.62   0.00 | diff= 22.12

0.00  34.88  63.89  82.62  89.06  83.67  68.87  48.09  24.48   0.00 | diff= 21.06

0.00  32.89  60.40  78.44  85.03  80.45  66.81  47.10  24.17   0.00 | diff= 20.26

0.00  31.07  57.19  74.55  81.23  77.35  64.72  45.98  23.73   0.00 | diff= 19.47

0.00  29.39  54.21  70.92  77.63  74.36  62.62  44.77  23.21   0.00 | diff= 18.70

0.00  27.84  51.46  67.52  74.23  71.47  60.52  43.49  22.64   0.00 | diff= 17.95

0.00  26.41  48.89  64.34  71.00  68.67  58.43  42.17  22.02   0.00 | diff= 17.23

0.00  25.07  46.50  61.35  67.94  65.97  56.37  40.84  21.38   0.00 | diff= 16.53

0.00  23.83  44.26  58.54  65.02  63.36  54.34  39.49  20.72   0.00 | diff= 15.85

0.00  22.68  42.17  55.88  62.24  60.85  52.34  38.14  20.05   0.00 | diff= 15.20

0.00  21.59  40.20  53.38  59.60  58.42  50.39  36.81  19.38   0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x 

A[0] A[9]

i=4

+, +, x 

i=8

A

B
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Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]

• Assignment:  the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0;         /* variable  in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores – 1;   /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;   

create thread1 and call solve_pp(1, 2);

create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation
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Orchestration 

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores – 1;   /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

LOCK();

diff = diff + mydiff;

UNLOCK();

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

BARRIER();

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement  must be executed. 

if (diff <TOL) done = 1;
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches


