
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

8. Instruction Level Parallelism:
Exploiting ILP Using Multiple Issue and Speculation

Ver. 2024-01-15aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is data cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Hardware register renaming (last lecture)

• Logical registers (architectural registers) which are ones defined by
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Out-of-order execution (OoO execution)

• In in-order execution model, all instructions are executed
in the order that they appear as (1), (2), (3), (4) ...
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

• insn (3) is allowed to be executed before the insn (2)

• A key design philosophy behind OoO execution to extract
ILP by executing instructions as quickly as possible.

• Scoreboarding (CDC6600 in 1964)

• Tomasulo algorithm
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB
(reorder buffer)

• The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end
Out-of-order back-end

In-order retirement

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Instruction window

The key idea for OoO execution (1/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

IF ID Renaming

1

2

Cycle 1

IF ID Renaming

3

4

5

6

Cycle 4

7

8

IF ID Renaming

5

6

Cycle 5

7

8

9

10

I1: sub p9,p1,p2
I2: add p10,p9,p3
I3: or p11,p4,p5
I4: and p12,p10,p11

(3)

(4)

Data flow graph

(1)

(2)

p9

p10
p11

1

2

3

4

IF ID Renaming

1

2

3

4

5

6

Cycle 3

In-order front-end

IF ID Renaming

1

2

3

4

Cycle 2

Instruction window

1

2

assume that instructions cannot
exit the instruction window until cycle 5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

The key idea for OoO execution (2/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

I1: sub p9,p1,p2
I2: add p10,p9,p3
I3: or p11,p4,p5
I4: and p12,p10,p11

(3)

(4)

Data flow graph

(1)

(2)

p9

p10
p11

Instruction windowIF ID Renaming

5

6

Cycle 5

7

8

9

10

1

2

3

4

Instruction windowIF ID Renaming

7

8

Cycle 6

9

10

11

12

5

2

6

4

Issue

1

3

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

We assume that I1 and I3 can be issued at cycle 6 by dependence.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

The key idea for OoO execution (3/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Instruction windowIF ID Renaming

7

8

Cycle 6

9

10

11

12

5

2

6

4

Issue

1

3

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

6 5 4 3 2 1ROB

8 7 6 5 4 3 2 1ROB

10 9 8 7 6 5 4 3 2 1ROB

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

Retire

2

3

RF

RF

Architectural register file

Head of the FIFO

Completed consecutive insns

In commit stage, the computed
values are written back to ROB
(reorder buffer)

The completed consecutive
instructions can be retired.
The result is written back to
register file.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Exercise 1

• OoO execution

• Fill out the cycle by cycle processing behavior of these 12
instructions

• wakeup

• select

75

6

8 11

9 10

3

4

1
2

12

Data flow graph

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Prediction miss and recovery

• Assume that instruction 3 is a miss predicted branch and its target insn is 20

• When insn 3 is retired, it recovers by flushing all instructions and restart

• Register file (and PC) has the architecture state after insn 3 is executed

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

2

3

RF

Instruction windowIF ID RenamingCycle 10 Issue Execute Commit

ROB

Retire

RF

Recovery by flushing instructions on the wrong path (may take several cycles)

Instruction windowIF ID RenamingCycle 11

20

21

Issue Execute Commit

ROB

Retire

RF

Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Branch prediction miss and aggressive recovery

• Instruction 3 is a miss predicted branch and its target insn is 20

• When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID RenamingCycle 8 Issue Execute

2

Commit

1

3

8 7 6 5 4 3 2 1ROB

3 2 1ROB

Retire

1

RF

Recovery by flushing instructions on the wrong path (may takes several cycles)

Instruction windowIF ID RenamingCycle 9

20

21

Issue Execute Commit

2

3 2ROB

Retire

2

3

RF

Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB
(reorder buffer)

• The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end
Out-of-order back-end

In-order retirement

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Recommended Reading

• Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors

• Toru Koizumi (NITech), Ryota Shioya, Shu Sugita, Taichi Amano, Yuya Degawa, Junichiro
Kadomoto, Hidetsugu Irie, Shuichi Sakai (U.Tokyo)

• 56th IEEE/ACM International Symposium on Microarchitecture (MICRO’23)

• A quote:
“Out-of-order superscalar processors are currently the only architecture that speeds up irregular
programs, but they suffer from poor power efficiency. To tackle this issue, we focused on how to
specify register operands. Specifying operands by register names, as conventional RISC does, requires
register renaming, resulting in poor power efficiency and preventing an increase in the front-end
width. In contrast, a recently proposed architecture called STRAIGHT specifies operands by inter-
instruction distance, thereby eliminating register renaming. However, STRAIGHT has strong
constraints on instruction placement, which generally results in a large increase in the number of
instructions.

• We propose Clockhands, a novel instruction set architecture that has multiple register groups and
specifies a value as “the value written in this register group 𝑘 times before.” Clockhands does not
require register renaming as in STRAIGHT. In contrast, Clockhands has much looser constraints on
instruction placement than STRAIGHT, allowing programs to be written with almost the same number
of instructions as Conventional RISC. We implemented a cycle-accurate simulator, FPGA
implementation, and first-step compiler for Clockhands and evaluated benchmarks including SPEC CPU.
On a machine with an eight-fetch width, the evaluation results showed that Clockhands consumes 7.4%
less energy than RISC while having performance comparable to RISC. This energy reduction increases
significantly to 24.4% when simulating a futuristic up-scaled processor with a 16-fetch width, which
shows that Clockhands enables a wider front-end.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Instruction window

1

2

Issue Execute Commit

2 1 ROB

Retire

Cycle 1

Instruction window

3

2

4

Issue

1

Execute Commit

4 3 2 1 ROB

Retire

Cycle 2

Instruction window

3

5

6

Issue

2

4

Execute

1

Commit

6 5 4 3 2 1 ROB

Retire

Cycle 3

Instruction window

7

8

6

Issue

3

5

Execute

2

4

Commit

1

8 7 6 5 4 3 2 1 ROB

Retire

1

Cycle 4

Instruction window

7

9

10

Issue

6

8

Execute

3

5

Commit

2

4

10 9 8 7 6 5 4 3 2 ROB

Retire

2

Cycle 5

Instruction window

11

9

10

12

Issue

7

Execute

6

8

Commit

3

5

12 11 10 9 8 7 6 5 4 3 ROB

Retire

3

4

Cycle 6

Instruction window

10

12

Issue

9

11

Execute

7

Commit

6

8

12 11 10 9 8 7 6 5 ROB

Retire

5

6

Cycle 7

Instruction window

12

Issue

10

Execute

9

11

Commit

7

12 11 10 9 8 7 ROB

Retire

7

8

Cycle 8

Instruction window Issue

12

Execute

10

Commit

9

11

12 11 10 9 ROB

Retire

9

Cycle 9

Instruction window Issue Execute

12

Commit

10

12 11 10 ROB

Retire

10

11

Cycle 10

