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Gshare (TR-DEC 1993)

• How to predict
• Using the exclusive OR of the global branch history and PC to access PHT, 

then MSB of the selected counter is the prediction.

• How to update

• Shifting BHR one bit left and update LSB by branch outcome in IF stage.

• Update the used counter in the same way as 2BC in WB stage.
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Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation.  It 
predicts 1 if y>=0, predicts 0 if y<0

• x is branch history. xi is either -1, 
meaning not taken or 1, meaning 
taken

• How to update

• Train the weights of used 
perceptron when the prediction 
miss or |y| < T (Threshold)

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

Table of Perceptrons (w)

Program Counter

…

Branch History (x)

Selected 
Perceptron

Compute y

Prediction

y

8 bit weight x 29 = 232 bit

n = 28

T = 1.93n + 14

branch outcome
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Branch predictors based on pattern matching

• Find the longest matching pattern (green rectangle)

• Select the proper matching length or long matching pattern (blue rectangle)

• Count the number of 0 and the number of 1 after the long matting patterns 
(red rectangle), then predict by majority vote.

?

?010

The long matching pattern

0

1

0

Prediction

Global branch history Prediction 0 or 1

?

The longest matching pattern

Appearing 0 twice and 1 once, so the prediction will be 0
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Recommended Reading

• Prophet-Critic Hybrid Branch Prediction

• Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC, 
Konrad Lai, Intel, Mateo Valero

• ISCA-31  pp. 250-261 (2004)
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A quote from Introduction (1/2)

Conventional predictors are analogous to a taxi with just one driver. 

He gets the passenger to the destination using knowledge of the 
roads acquired from previous trips; i. e., using history information 
stored in the predictor’s memory structures. 

When he reaches an intersection, he uses this knowledge to decide 
which way to turn. 

The driver accesses this knowledge in the context of his current 
location. 

Modern branch predictors access it in the context of the current 
location (the program counter) plus a history of the most recent 
decisions that led to the current location.
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A quote from Introduction (2/2)

Prophet/critic hybrids are analogous to a taxi with two drivers: the 
front-seat and the back-seat. The front-seat driver has the same role 
as the driver in the single-driver taxi. This role is called the prophet. 

The back-seat driver has the role of critic. She watches the turns the 
prophet makes at intersections. She doesn’t say anything unless she 
thinks he’s made a wrong turn. When she thinks he’s made a wrong turn, 
she waits until he’s made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but, 
after he makes a few more turns, in hindsight appear to be correct.) 
Only when she’s certain does she point out the mistake. 

To recover, they backtrack to the intersection where she believes the 
wrong-turn was made and try a different direction.
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Prophet-Critic Hybrid Branch Prediction
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Prophet-Critic Hybrid Branch Prediction

16KB perceptron

16KB gshare

16KB gshare (prophet) +
8KB perceptron (critic)

16KB perceptron (prophet) +
8KB gshare (critic)
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is data cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw  x4, 4(x7)
(4) add x8,x9,x4

(3) lw  x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the 
value of insn i.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5 + 21     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

55 = 2  + 3      (3)

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

R3 = R5 + 2      (3)

wrong sequence
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Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally 
written corresponds to instruction j.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5 + 21     (4)

5 = 2  + 3      (3)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

R3 = 10

R5 = 2

R3 = R5 + 3      (3)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

wrong sequence
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the 
correct value.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5  + 21     (4)

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R3 = R5 + 3      (3)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

wrong sequence

20 = 10 x 2      (1)

5 = 2  + 3      (3)

6  = 5 + 1      (2)

11 = 5  + 6      (4)
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Data dependence and renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4) (3)

(4)

(3)

(4)

(1)

(1)

(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R8 = R5 + 3      (3)

R7 = R8 + R4     (4)

RAW

RAW
RAW
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Hardware register renaming

• Logical registers (architectural registers) which are ones defined by 
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique 
physical register dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue
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Exercise 1

• Register renaming

• Rename the following instruction stream using physical registers 
of p9, p10, p11, and p12

• assuming that x1 and x2 are renamed to p1 and p2, respectileby in 
advance

I0: sub x5,x1,x2

I1: add x9,x5,x4

I2: or  x5,x5,x2

I3: and x2,x9,x1
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6-stage pipelining RISC-V processor and register renaming
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• The strategy is to separate instruction fetch step (IF),  instruction decode 
step (ID), register renaming (RN), execution step (EX), memory access step 
(MA), and write back step (WB).

sub x5,x1,x2

in cycle1

sub x5,x1,x2

in cycle2

sub p9,p1,p2

in cycle4

sub p9,p1,p2

in cycle5

sub x5,x1,x2

in cycle6

P_RN
RN stage

renaming

in cycle3
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The main hardware for register renaming

• Assume that we have 128 physical registers from p0 to p127

• a physical register is identified with a 7-bit register number (physical reg ID)

• Free tag buffer

• 7-bit width and 128-entry FIFO memory

• having reg IDs of free (not allocated) physical registers

• Register map table

• 7-bit width and 32-entry RAM

• each logical register has its renamed physical reg ID

9101112

Free tag buffer (FIFO)

head

Register map table

0

1

2

3

4

5

6

7

8

31

tail

7 bit

7 bit
128-entry

32-
entry

dequeue

enqueue
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Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst  = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
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Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x9
src1 = x5
src2 = x4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4
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Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x5
src2 = x2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
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Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x2
src1 = x9
src2 = x1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
I3: and p12,p10,p1
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = x9

src1 = x5
src2 = x4

dst = p10
src1 = p5
src2 = p4
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Renaming two instructions per cycle for n-way superscalar

• Renaming instruction I0 and I1 (n = 2)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table (4R, 2W)

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = x5
A_src1 = x1
A_src2 = x2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = x9

B_src1 = x5
B_src2 = x4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag buffer
I0

I1
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Exercise 2

• Renaming instruction I0, I1, and I2 (n = 3)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

draw the hardware organization
and the example behabior of cycle 1
renaming three instructions.
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Pollack’s Rule

• Pollack's Rule states that microprocessor "performance 
increase due to microarchitecture advances is roughly 
proportional to the square root of the increase in 
complexity".  Complexity in this context means processor 
logic, i.e. its area.

WIKIPEDIA
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Hardware register renaming

• Logical registers (architectural registers) which are ones defined by 
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique 
physical register dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue
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Example behavior of register renaming and valid bit

• Renaming the first instruction I0

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

Register map table

2

5->9

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst  = p9
src1 = x1
src2 = p2

I0: sub p9,x1,p2

0

1

1

valid bit
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the 
value of insn i.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5 + 21     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

55 = 2  + 3      (3)

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

R3 = R5 + 2      (3)

wrong sequence
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Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas 
Subramoney, Intel

• ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),  pp. 79-91, 
2020 

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of 
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance. 
State-of-the-art value predictors try to maximize the number of instructions that can be value 
predicted, with the belief that a higher coverage will unlock more ILP and increase performance. 
Unfortunately, this comes at increased complexity with implementations that require multiple 
different types of value predictors working in tandem, incurring substantial area and power cost. 
In this paper we motivate towards lower coverage, but focused, value prediction. Instead of 
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we 
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that 
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high 
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60 
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel 
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a 
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value 
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is 
similar to these predictors in performance, even when they are given nearly eight times the storage 
and have 60% more prediction coverage than our solution.


