Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

9. Instruction Level Parallelism:
Concepts and Challenges

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Performance Factors

« Performance = f x IPC
« f: frequency (clock rate)
« IPC: executed (retired) instructions per cycle

= The performance can be improved by increasing either f or IPC

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle implementation and pipelining

\
« When the washing of load A is finished at 6:30 p.m., another washing of 2%
load B starts.

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

e What is the laTency . §PM 7 8 9 10 11 12 : 2 AM
SN e B R B e e B e e

(execution time) of each load? Tk

or E‘I"&l ﬁ%l |

e J5=M__

: s 1

. mjs=
Time STM 7 8 l 9 1|0 1|1 1f 1| QIAM R
e S

» O5=l

- O0=l

c mE=

° J5=M

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

5-stage pipelining RISC-V processor with data forwarding

\

« The strategy is to separate instruction fetch step (IF), instruction decode \
step (ID), execution step (EX), memory access step (MA), and write back step
(WB).

« Use the pipeline registers P1, P2, P3, P4.

IF stage ID stage EX stage MA stage WB stage
P1 P2 P4
ey ey T ey
IFID_ir - LI
W_npc [19:15], ey w_rl N
32°h4 IDIF_ir rdl —
[24:20]
> ra2 ! ! P3_alu -
P3_rd a
N m2 = >Slwa w_r2 o adr L]
IP4_s & rd2 o "]
<
&' ! !P4_b_> we o rd :)
I b wd >l we =
am_ _3> a RF2 wd] (.
imem m5 2| am_
o
r,i,s,b,u,3,1d /[dmem
a
m3 >(gen_imm) | m9
a w_imm P3_rd P4_rd
. mE s
IFID_ir [11:7] N a — 'EI
Ny P
P1_pc +| =
— P2_tpc mé —_—‘ P3_alu — _—
w_rt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Single-cycle and pipelining processors

The pipelining can improve ALU utilization to nearly 100%.

Program
execution —. 200 400 600 800 1000 1200 1400 1600 1800
Time T T T I I | o
order
(in instructions)
1w x1,100(x@) |t Reg [AL | P22 | Reg
-t - Instructi Dat
1w x2, 2@@(X@) 800 ps mf;?ﬁ'“ Reg [ALU ac:eis Reg
= ™ |Instruction
1w x3,300(x0) 800 ps fetch
800 ps
Program
execution —. 200 400 600 800 1000 1200 1400 -
Time 1 T T T T | "
order
(in instructions)
1w x1,100(x0) |™risen |Reg| AL | P IR
*——"|nstructi Dat
1w x2,200(x0) 200ps| jeen | |Resf AR CEo. |Rec
<" |nstruction Data
lw x3,300(x0) 200ps | fetch Reg [+ ALY access | o9

- o .

200 ps 200ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Scalar and Superscalar processors X
\

 Scalar processor can execute at most one instruction per clock
cycle by using one ALU.
« IPC (Executed Instructions Per Cycle) is less than 1.
 Superscalar processor can execute more than one instruction
per clock cycle by executing multiple instructions by using
multiple pipelines.
« IPC (Executed Instructions Per Cycle) can be more than 1.
« using n pipelines is called n-way superscalar

Time (in clock cycles)

200 400 600 800 1000 1200 1400
T T T T T T T CC1 cc2 CC3 CcC4 CC5 cCe6 CC1 cc2 CC3
Instruction | Instruction . Data
Instruction Data n fetch decode Bl access Wirite back
fetch Reg I access Reg : :
Instructio Instruction . Data
fetch decode EEE access Wirite back
- .
Instruction Re ALU Data Re
etc access Instruction | Instruction . Data .
200 ps fetch g g
fetch decode Bz tiie access Write back
"200 ps- Instruction Reg ALU Data Reg pr—— pr—— Dain
nsfruction | Instruction) al)
feteh | |_“ | | access fetch decode B i access Write back
P P P N - Y Instruction | Instruction . Data .
200 ps 200ps 200 ps 200 ps 200 ps fetch decode Execution access | VWrite back
Instruction | Instruction Data .
fetch decod B access Write back
Instruction | Instruction . Data .
fetch decode =i access Wirite back
f Instruction | Instruction . Data .
(a) pipeline diagram of scalar processor ructon [‘nsmwetion [Sggbe ™ oata T o

ﬁv (b) pipeline diagram of 2-way superscalar processor
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exercise 1
\
« Referring to the following diagram, draw a block diagram of a 2-way
superscalar processor (4-stage pipelining) supporting add, addi, lw, and
sw, which does not adopt data forwarding

ral
4 rdl

ra2 ALU .
P3_rd - adr
—{wa rd2 0 1
g rd >
Wi
1
r_ am_| | | RF2 wd
pc imem am_
dmem

gen_imm

A block diagram of a scalar processor (4-stage pipelining) supporting add, addi, lw, and sw,
which does not adopt data forwarding

~ A==
< 7

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exploiting Instruction Level parallelism (ILP)

!
* A superscalar has to handle some flows efficiently to exploit ILP 2%

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE)
* Prediction
* Another obstacle is instruction cache

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

(5) RISC-V branch if not equal instructions (bne)
\
« RISC-V conditional branch instructions (bne, branch x

if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h =1 + j;

bne x4, x5, Lbll
add x6, x4, x5

f (i!=j) goto Lbll

1
h =1+ j;

Lbll:

* Instruction Format (B-type):

imm(12| | imm|10:5 rs2 rsl funct3 | imm|4:1| | imm|11] | opcode | B-type

« How is the branch destination address specified?

@%dapf@d from Computer Organization and Design, Patterson & Hennessy, © 2005 9
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Why do branch instructions degrade IPC?

\
« Another approach is fetching the following instructions (an instruction \
at the next address and following ones) when a branch (bne) is fetched.

* When a branch (08 bne) is taken, the wrong instructions fetched

are flushed.
cc2 cc3 cc4d cc5 cc6| cc7 cc8 cc9 «cclo
OOadd| IF | ID | EX | MEM| WB |
04 add LIF [I> | EX [MEM| WB |
08 bne | IF | ID | EX |MEM| WB
Oc add [ZF] 10 [NEXH MEM] we
10 add [IF [0 TEXT] MEM [we |
14 add [TF | ™ [TEXT MEm] we |
18 add IF | Id MEM] WB]
1c add IF | =MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

Because of the taken of a branch instruction, only one instruction is executed in cc4 and no

ﬁ’ instructions are executed in CC6 and CC7. This reduces the IPS.
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Deeper pipeline with three ID stages

\
* Another approach is fetching the following instructions (an instruction \
at the next address and following ones) when a branch (bne) is fetched.

ccl cc2 «cc3 cc4 cc5| cc6 cc7 cc8 cc9 | cclo ccll ccl2 ccl3 ccl4d

OOadd [1F [1p1 [1D2 [ID3 | EX |MEM| WB |

O4add [1F [1Dl [1D2 | ID3 | EX |MEM| WB |

08 bne [IF [1Dt [D2 [ID3 | EX [MEM] WB]

Oc add ["ZF [o1 | D2 | ID3 MEM| WB |

10 add [IF | 1p1 [D2 | 103 [NEXT] MEM] WB

14 add [IF [b1 [D2 | ID3 [TEXT [MEM [wB

18 add [[ZF | 0t | D2 [103 [NEXI MEM | WB |

1c add [IF | b1 [D2 | ID3 [TEXT| MEM | WB |

10 add | IF | 1d1 | D2 | ID3 MEM | WB |

14 add | IF | d1 | D2 | ID3 MEM | WB |

18 add IF | It | D2 | ID3 MEM | WB |
IF | D1 | ID2 | ID3 -MEM| WB |

1c add |

ﬁw 2-way superscalar adopting deeper pipeline executing instruction sequence with a branch
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Branch predictor X
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known

definitively.
« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Prediction Accuracy of weather forecasts

ERADTFHREE (Y HRROWUH T
90 1.0
III/’IIII
E}’i: BAkOHEOEDE | | | 2 EFH (dEHE | = 5 |k B2 & | R R | @ E | AMIEED | SN | & | 2EPE
[rp] A % B H 79 85 84 84 84 84 85 85 79 83
7 8 r 115 %
Fi ' E?n; A®H 75 82 80 80 81 80 81 81 75 79
% ™~ ¥ 3HH 71 72 76 77 75 76 76 77 76 76 71 75
th EE 4HHE 68 70 74 74 72 73 73 74 73 73 69 72
m o7
s = 5HEB 66 67 72 72 69 71 71 72 71 70 68 70
G L y 20 T 6HE 65 65 70 70 66 70 69 71 70 68 67 68
7HH 63 64 69 68 64 67 67 69 68 67 65 67
3~7HB¥S 67 68 72 72 69 71 71 73 72 71 68 70
1985 1990 1995 2000 2005 2010 2015
— EPE(FF) —EDR(GAES FFH) T“ LI I
— FHRBRE(FF —F#RinE (A% FFH) o .
Ministry of Land, Infrastructure, Transport and Tourism
FRHOE(017F)FTERRLCVET . ROEMZFHA3LIE(2019F)1F31FEOFETT. -

: Lo
Tomorrow will be rainy: Bt TES

@ J[AIRT

lapan Meteorclogical Agency

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE)

 Prediction
e Another obstacle is instruction cache

 Register data flow (data dependence)

« Out-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
+ Out-of-order execution (1)

(2)
e Another obstacle is instruction cache 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

add
add

add

1w

add
add
add

x5,x1,x2 0
x9,x5,x3

x4, 4(x7) RAW
x8,x9,x4 @
x4, 4(x7)

x5,x1,x2 RAW
x9,x5,x3
x8,x9,x4

True data dependence

* Insniwrites aregister that insn j reads, RAW (read after write
* Program order must be preserved to ensure insn j receives the

value of insn i.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 = R3 + 1 (2)
‘lat%iiiﬁ-z; (3)
R7 =(R3)+ R4 (4)
20 = 10 x 2 (1)
21 = 20 + 1 (2)
=2 + 3 (3)
26 =(5)+ 21 (4)

R3 = 10

RS = 2

R3 = R3 X RS (1)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
R3 = R5 + 2 (3)

20 = 10 x 2 (1)

21\x\ge 1 (2)

41 = 20 + 21 (4)
5 -2 +3 (3)

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

15

Output dependence

* Insniand j write the same register, WAW (write after write)

\

* Program order must be preserved to ensure that the value finally

written corresponds to instruction j.

wrong sequence

R3 = 10 R3 = 10
RS = 2 RS = 2
= R3 x RS (1) R3 = R5 + 3 (3)
R4 = R3 + 1 (2) R3 = R3 X R5 (1)
(R3)= R5 + 3 (3) R4 = R3 + 1 (2)
R7 = R3 + R4 (4) R7 = R3 + R4 (4)
(20)= 10 x 2 (1) 5 =2 +3 (3)
|21 = 20 + 1 (2) 20 = 10 x 2 (1)
=2 + 3 (3) 21\2@ + 1 (2)
26 5+ 21 (4) 41 = 20 + 21 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

Antidependence

* Insnireads aregister that insn j writes, WAR (write after read

* Program order must be preserved to ensure that i reads the
correct value.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 =(R3)+ 1 (2)
RS + 3 (3)
R7 = R3 + R4 (4)
20 = 10 x 2 (1)
21 =20)+ 1 (2)
(GY<2 +3 (3)
26 = 5 + 21 (4)

R3 = 10

RS = 2

R3 = R3 x R5 (1)
R3 = R5 + 3 (3)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
20 = 10 X 2 (1)
5 =2 + 3 (3)
6 =5 +1 (2)
11 =5 + 6 (4)

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

17

Data dependence and renaming

* True data dependence (RAW)

« Name (false) dependences
« Output dependence (WAW) "3
 Antidependence (WAR) .

RS
R7

R3 = R3 X R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

= R3 X R5
= R3 + 1
= R5 + 3
= R8 + R4

(1)
(2)
(3)
(4)

18

Hardware register renaming

« A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

Commit/
Retire

IF ID Renaming | Dispatch Issue | Execute | Complete

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

In-order and out-of-order (OoQO) execution %\%
\

« Inin-order execution model, all instructions are

executed in the order that they appear. @
This can lead to unnecessary stalls.
 Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence. @ @

 With out-of-order execution,

 Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

« Dynamic scheduling: insn (3) is allowed to be executed R3 = R3 x R5 (1)

before the insn (2) R4 = R3 +1 (2)

« Tomasulo algorithm it Ez;
(IBM System/360 Model 91 in 1967)

Data flow graph

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Multi-Ported Memories (for FPGASs)

LVT (Live Value Tabele) design

2w2r

R[)Af:ldr —>

Rinddr—| vt
WOAddr—) (ALMs)

WlAddr—’
— —
BRAM :f
BRAM o L, p
W — L 1 OData
W] I OData v
OData A 4
BRAM
BRAM —
—y
—_ BRAM
W, T >0
1Data) RlData
BRAM
—

Figure 1: A 2W/2R Live Value Table (LV'T) design.

\

[8] C.E. LaForest and J. G. Steffan. Efficient Multi-ported
Memories for FPGAs. In Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA " 10, pages 41-50, New
York, NY, USA, 2010. ACM.

Read —+—

Addr. '

Write ———

Addr.

IW/nR

Wi _f—’Mml

Figure 2: A generalized mW/nR memory implemented using a
Live Value Table (LVT)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

21

