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Performance Factors

• Performance = f x IPC
• f :  frequency (clock rate)

• IPC :  executed (retired) instructions per cycle

Performance    =  clock rate  x  1 / # CPU clock cycles for a program

for a program

CPU execution time             # CPU clock cycles for a program

for a program                               clock rate   
=   -------------------------------------------

Performance is the inverse of CPU execution time. 

◼ The performance can be improved by increasing either f or IPC



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of 
load B starts. 

• Pipelined laundry takes 3.5 hours just using the same hardware 
resources. The cycle time is 30 minutes. 

• What is the latency 
(execution time) of each load?
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5-stage pipelining RISC-V processor with data forwarding
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• The strategy is to separate instruction fetch step (IF),  instruction decode 
step (ID), execution step (EX), memory access step (MA), and write back step 
(WB).

• Use the pipeline registers P1, P2, P3, P4.
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Single-cycle and pipelining processors

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

• The pipelining can improve ALU utilization to nearly 100%.
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Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock 
cycle by using one ALU. 
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction 
per clock cycle by executing multiple instructions by using 
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Exercise 1

• Referring to the following diagram, draw a block diagram of a 2-way 
superscalar processor (4-stage pipelining) supporting add, addi, lw, and 
sw, which does not adopt data forwarding
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A block diagram of a scalar processor (4-stage pipelining) supporting add, addi, lw, and sw, 
which does not adopt data forwarding
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is instruction cache
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(5) RISC-V branch if not equal instructions (bne)

9

• RISC-V conditional branch instructions (bne, branch 
if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5     # h = i + j;

Lbl1:  ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
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Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (an instruction 
at the next address and following ones) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
are flushed.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10

Because of the taken of a branch instruction, only one instruction is executed in cc4 and no 
instructions are executed in CC6 and CC7. This reduces the IPS.

2-way superscalar processor executing instruction sequence with a branch

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add IF ID EX MEM WB
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Deeper pipeline with three ID stages

• Another approach is fetching the following instructions (an instruction 
at the next address and following ones) when a branch (bne) is fetched.

IF ID1 EX MEM WB

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10 cc11 cc12 cc13 cc14

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add

10 add

14 add

18 add

1c add
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Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict 
which way (taken or untaken) a branch will go before this is known 
definitively.

• A random predictor will achieve about a 50% hit rate because the 
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch 
predictors for high-performance commercial processors?
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Prediction Accuracy of weather forecasts

Tomorrow will be rainy?
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is instruction cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw  x4, 4(x7)
(4) add x8,x9,x4

(3) lw  x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the 
value of insn i.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5 + 21     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

55 = 2  + 3      (3)

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

R3 = R5 + 2      (3)

wrong sequence
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Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally 
written corresponds to instruction j.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5 + 21     (4)

5 = 2  + 3      (3)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

R3 = 10

R5 = 2

R3 = R5 + 3      (3)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

wrong sequence
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the 
correct value.

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5  + 21     (4)

R3 = 10

R5 = 2

R3 = R3 x R5     (1)

R3 = R5 + 3      (3)

R4 = R3 + 1      (2)

R7 = R3 + R4     (4)

wrong sequence

20 = 10 x 2      (1)

5 = 2  + 3      (3)

6  = 5 + 1      (2)

11 = 5  + 6      (4)
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Data dependence and renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 3      (3)

R7 = R3 + R4     (4) (3)

(4)

(3)

(4)

(1)

(1)

(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R8 = R5 + 3      (3)

R7 = R8 + R4     (4)

RAW

RAW
RAW
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Hardware register renaming

• Logical registers (architectural registers) which are ones 
defined by ISA
• x0, x1, … x31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a 
unique physical register dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor
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In-order and out-of-order (OoO) execution

• In in-order execution model, all instructions are 
executed in the order that they appear. 
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first, 
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence 
and antidependence, just having true data dependence

• Dynamic scheduling: insn (3) is allowed to be executed 
before the insn (2)

• Tomasulo algorithm 
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

R3 = R3 x R5  (1)

R4 = R3 + 1   (2)

R3 = R5 + 2   (3)

R7 = R3 + R4  (4)
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Multi-Ported Memories  (for FPGAs)

1W/2R design

LVT (Live Value Tabele) design


