
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

5. Instruction Level Parallelism:
Concepts and Challenges

Ver. 202-12-25aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Performance Factors

• Performance = f x IPC
• f : frequency (clock rate)

• IPC : executed (retired) instructions per cycle

Performance = clock rate x 1 / # CPU clock cycles for a program

for a program

CPU execution time # CPU clock cycles for a program

for a program clock rate
= ---

Performance is the inverse of CPU execution time.

◼ The performance can be improved by increasing either f or IPC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the latency
(execution time) of each load?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

5-stage pipelining RISC-V processor with data forwarding

4

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
32’h4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

m8

m
u
x

1

0 P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
P3_alu

w
_
l
d
d

P4_ld

P
3
_
s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P4_s &
!P4_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P3_rd

IFID_ir [11:7]

w
_
t
p
c

EX stage

32

P4_rd

P4
WB stage

P
4
_
l
d
d

P
4
_
a
l
u

m
u
x1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

32

P3
MA stage

w
_
a
l
u

P2_r2
P
2
_
r
d

P
3
_
i
n
3

P3_alu

2

m
u
x1

0

2

m13

w_m13

m
u
x1

0

2

w
_
i
n
3

• The strategy is to separate instruction fetch step (IF), instruction decode
step (ID), execution step (EX), memory access step (MA), and write back step
(WB).

• Use the pipeline registers P1, P2, P3, P4.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Single-cycle and pipelining processors

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

• The pipelining can improve ALU utilization to nearly 100%.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock
cycle by using one ALU.
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction
per clock cycle by executing multiple instructions by using
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Exercise 1

• Referring to the following diagram, draw a block diagram of a 2-way
superscalar processor (4-stage pipelining) supporting add, addi, lw, and
sw, which does not adopt data forwarding

r_
pc

+

am_
imem

1

0
adr

wd

rd

am_
dmem

1

0

ra1

ra2

wa

wd

rd1

rd2

RF2

gen_imm

ALU

32

P3_rd

P3_rd

A block diagram of a scalar processor (4-stage pipelining) supporting add, addi, lw, and sw,
which does not adopt data forwarding

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

(5) RISC-V branch if not equal instructions (bne)

9

• RISC-V conditional branch instructions (bne, branch
if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5 # h = i + j;

Lbl1: ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (an instruction
at the next address and following ones) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
are flushed.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Because of the taken of a branch instruction, only one instruction is executed in cc4 and no
instructions are executed in CC6 and CC7. This reduces the IPS.

2-way superscalar processor executing instruction sequence with a branch

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add IF ID EX MEM WB

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Deeper pipeline with three ID stages

• Another approach is fetching the following instructions (an instruction
at the next address and following ones) when a branch (bne) is fetched.

IF ID1 EX MEM WB

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10 cc11 cc12 cc13 cc14

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add

10 add

14 add

18 add

1c add

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Prediction Accuracy of weather forecasts

Tomorrow will be rainy?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the
value of insn i.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

55 = 2 + 3 (3)

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

R3 = R5 + 2 (3)

wrong sequence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

5 = 2 + 3 (3)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

R3 = 10

R5 = 2

R3 = R5 + 3 (3)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

wrong sequence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the
correct value.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R3 = R5 + 3 (3)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

wrong sequence

20 = 10 x 2 (1)

5 = 2 + 3 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Data dependence and renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4) (3)

(4)

(3)

(4)

(1)

(1)

(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R8 = R5 + 3 (3)

R7 = R8 + R4 (4)

RAW

RAW
RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Hardware register renaming

• Logical registers (architectural registers) which are ones
defined by ISA
• x0, x1, … x31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

In-order and out-of-order (OoO) execution

• In in-order execution model, all instructions are
executed in the order that they appear.
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

• Dynamic scheduling: insn (3) is allowed to be executed
before the insn (2)

• Tomasulo algorithm
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Multi-Ported Memories (for FPGAs)

1W/2R design

LVT (Live Value Tabele) design

