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Performance Factors

« Performance = f x IPC
« f: frequency (clock rate)
« IPC: executed (retired) instructions per cycle

= The performance can be improved by increasing either f or IPC
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Single-cycle implementation and pipelining

\
« When the washing of load A is finished at 6:30 p.m., another washing of 2%
load B starts.

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.
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5-stage pipelining RISC-V processor with data forwarding

\

« The strategy is to separate instruction fetch step (IF), instruction decode \
step (ID), execution step (EX), memory access step (MA), and write back step
(WB).

« Use the pipeline registers P1, P2, P3, P4.
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Single-cycle and pipelining processors

The pipelining can improve ALU utilization to nearly 100%.

Program
execution —. 200 400 600 800 1000 1200 1400 1600 1800
Time T T T I I | o
order
(in instructions)
1w x1,100(x@) |t  Reg [ AL | P22 | Reg
-t - Instructi Dat
1w x2, 2@@(X@) 800 ps mf;?ﬁ'“ Reg [ ALU ac:eis Reg
= ™ |Instruction
1w x3,300(x0) 800 ps fetch
800 ps
Program
execution —. 200 400 600 800 1000 1200 1400 -
Time 1 T T T T | "
order
(in instructions)
1w x1,100(x0) |™risen  |Reg| AL | P IR
*——"|nstructi Dat
1w x2,200(x0) 200ps| jeen | |Resf AR CEo. |Rec
<" |nstruction Data
lw x3,300(x0) 200ps | fetch Reg [+ ALY access | o9

- o .

200 ps 200ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Scalar and Superscalar processors X
\

 Scalar processor can execute at most one instruction per clock
cycle by using one ALU.
« IPC (Executed Instructions Per Cycle) is less than 1.
 Superscalar processor can execute more than one instruction
per clock cycle by executing multiple instructions by using
multiple pipelines.
« IPC (Executed Instructions Per Cycle) can be more than 1.
« using n pipelines is called n-way superscalar
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Exercise 1
\
« Referring to the following diagram, draw a block diagram of a 2-way
superscalar processor (4-stage pipelining) supporting add, addi, lw, and
sw, which does not adopt data forwarding
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A block diagram of a scalar processor (4-stage pipelining) supporting add, addi, lw, and sw,
which does not adopt data forwarding
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Exploiting Instruction Level parallelism (ILP)

!
* A superscalar has to handle some flows efficiently to exploit ILP 2%

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE)
* Prediction
* Another obstacle is instruction cache
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(5) RISC-V branch if not equal instructions (bne)
\
« RISC-V conditional branch instructions (bne, branch x

if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h =1 + j;

bne x4, x5, Lbll
add x6, x4, x5

f (i!=j) goto Lbll

# 1
# h =1+ j;

Lbll:

* Instruction Format (B-type):

imm(12| | imm|10:5 rs2 rsl funct3 | imm|4:1| | imm|11] | opcode | B-type

« How is the branch destination address specified?

@%dapf@d from Computer Organization and Design, Patterson & Hennessy, © 2005 9
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Why do branch instructions degrade IPC?

\
« Another approach is fetching the following instructions (an instruction \
at the next address and following ones) when a branch (bne) is fetched.

* When a branch (08 bne) is taken, the wrong instructions fetched

are flushed.
cc2 cc3 cc4d cc5 cc6| cc7 cc8 cc9 «cclo
OOadd| IF | ID | EX | MEM| WB |
04 add LIF [ I> | EX [MEM| WB |
08 bne | IF | ID | EX |MEM| WB
Oc add [ZF ] 10 [NEXH MEM] we
10 add [ IF [ 0 TEXT] MEM [ we |
14 add [TF | ™ [TEXT MEm] we |
18 add IF | Id MEM] WB ]
1c add IF | =MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

Because of the taken of a branch instruction, only one instruction is executed in cc4 and no

ﬁ’ instructions are executed in CC6 and CC7. This reduces the IPS.
C
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Deeper pipeline with three ID stages

\
* Another approach is fetching the following instructions (an instruction \
at the next address and following ones) when a branch (bne) is fetched.

ccl cc2 «cc3 cc4 cc5| cc6 cc7 cc8 cc9 | cclo ccll ccl2 ccl3 ccl4d

OOadd [ 1F [1p1 [ 1D2 [ ID3 | EX |MEM| WB |

O4add [ 1F [ 1Dl [ 1D2 | ID3 | EX |MEM| WB |

08 bne [ IF [ 1Dt [ D2 [ ID3 | EX [MEM] WB ]

Oc add ["ZF [ o1 | D2 | ID3 MEM| WB |

10 add [ IF | 1p1 [ D2 | 103 [NEXT] MEM] WB

14 add [ IF [ b1 [ D2 | ID3 [TEXT [ MEM [ wB

18 add [[ZF | 0t | D2 [ 103 [NEXI MEM | WB |

1c add [ IF | b1 [ D2 | ID3 [TEXT| MEM | WB |

10 add | IF | 1d1 | D2 | ID3 MEM | WB |

14 add | IF | d1 | D2 | ID3 MEM | WB |

18 add IF | It | D2 | ID3 MEM | WB |
IF | D1 | ID2 | ID3 -MEM| WB |

1c add |

ﬁw 2-way superscalar adopting deeper pipeline executing instruction sequence with a branch
c
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Branch predictor X
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known

definitively.
« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?
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Prediction Accuracy of weather forecasts
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Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE)

 Prediction
e Another obstacle is instruction cache

 Register data flow (data dependence)

« Out-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
+ Out-of-order execution (1)

(2)
e Another obstacle is instruction cache 4
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True data dependence

* Insniwrites aregister that insn j reads, RAW (read after write
* Program order must be preserved to ensure insn j receives the

value of insn i.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 = R3 + 1 (2)
‘lat%iiiﬁ-z; (3)
R7 =(R3)+ R4 (4)
20 = 10 x 2 (1)
21 = 20 + 1 (2)
=2 + 3 (3)
26 =(5 )+ 21 (4)

R3 = 10

RS = 2

R3 = R3 X RS (1)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
R3 = R5 + 2 (3)

20 = 10 x 2 (1)

21\x\ge 1 (2)

41 = 20 + 21 (4)
5 -2 +3 (3)
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Output dependence

* Insniand j write the same register, WAW (write after write)

\

* Program order must be preserved to ensure that the value finally

written corresponds to instruction j.

wrong sequence

R3 = 10 R3 = 10
RS = 2 RS = 2
= R3 x RS (1) R3 = R5 + 3 (3)
R4 = R3 + 1 (2) R3 = R3 X R5 (1)
(R3)= R5 + 3 (3) R4 = R3 + 1 (2)
R7 = R3 + R4 (4) R7 = R3 + R4 (4)
(20)= 10 x 2 (1) 5 =2 +3 (3)
|21 = 20 + 1 (2) 20 = 10 x 2 (1)
=2 + 3 (3) 21\2@ + 1 (2)
26 5+ 21 (4) 41 = 20 + 21 (4)
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Antidependence

* Insnireads aregister that insn j writes, WAR (write after read

* Program order must be preserved to ensure that i reads the
correct value.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 =(R3)+ 1 (2)
RS + 3 (3)
R7 = R3 + R4 (4)
20 = 10 x 2 (1)
21 =20)+ 1 (2)
(GY<2 +3 (3)
26 = 5 + 21 (4)

R3 = 10

RS = 2

R3 = R3 x R5 (1)
R3 = R5 + 3 (3)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
20 = 10 X 2 (1)
5 =2 + 3 (3)
6 =5 +1 (2)
11 =5 + 6 (4)
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Data dependence and renaming

* True data dependence (RAW)

« Name (false) dependences
« Output dependence (WAW) "3
 Antidependence (WAR) .

RS
R7

R3 = R3 X R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

= R3 X R5
= R3 + 1
= R5 + 3
= R8 + R4

(1)
(2)
(3)
(4)
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Hardware register renaming

« A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

Commit/
Retire

IF ID Renaming | Dispatch Issue | Execute | Complete
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In-order and out-of-order (OoQO) execution %\%
\

« Inin-order execution model, all instructions are

executed in the order that they appear. @
This can lead to unnecessary stalls.
 Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence. @ @

 With out-of-order execution,

 Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

« Dynamic scheduling: insn (3) is allowed to be executed R3 = R3 x R5 (1)

before the insn (2) R4 = R3 +1 (2)

«  Tomasulo algorithm it Ez;
(IBM System/360 Model 91 in 1967)

Data flow graph
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Multi-Ported Memories (for FPGASs)

LVT (Live Value Tabele) design

2w2r
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Rinddr—| vt
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BRAM :f
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W — L 1 OData
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OData A 4
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—y
—_ BRAM
W, T >0
1Data ) RlData
BRAM
—

Figure 1: A 2W/2R Live Value Table (LV'T) design.

\

[8] C.E. LaForest and J. G. Steffan. Efficient Multi-ported
Memories for FPGAs. In Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA " 10, pages 41-50, New
York, NY, USA, 2010. ACM.
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Figure 2: A generalized mW/nR memory implemented using a
Live Value Table (LVT)
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