
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

2. Instruction Set Architecture
and single-cycle processor

Ver. 2023-12-10aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

The birth of microprocessors in 1971

Name Year # of transistors

Intel 4004 1971 2,250

ENIAC, 1940s

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Discussion: software and hardware

#include <stdio.h>

main()

{

printf(“hello, world¥n”);

}

Hardware to light up some LEDs

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Two major ISA types: RISC vs CISC

• RISC (Reduced Instruction Set Computer) philosophy

• fixed instruction lengths

• load-store instruction sets

• limited addressing modes

• limited operations

• RISC: MIPS, Alpha, ARM, RISC-V, …

• CISC (Complex Instruction Set Computer) philosophy

• ! fixed instruction lengths

• ! load-store instruction sets

• ! limited addressing modes

• ! limited operations

• CISC : DEC VAX11, Intel 80x86, …

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

MIPS, ARM, and RISC-V

https://riscv.org/

https://en.wikipedia.org/wiki/MIPS_architecture

5

ARM (Advanced RISC Machine)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

RISC-V base and extensions

6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

RISC-V RV32I base and our target instructions

7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

RISC-V general-purpose registers

8

ABI(Application Binary Interface) name
XLEN = 32
for 32bit ISA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

RISC-V instruction length encoding

9

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

RISC-V base instruction format

10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

RISC-V Arithmetic Instructions

• RISC-V assembly language arithmetic statement

◼ Each arithmetic instruction performs only one operation

◼ Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

◼ Operand order is fixed (destination first)

◼ Those operands are all contained in the datapath’s register
file (x0, ..., x31)

11

add x7, x8, x9

sub x7, x8, x9

destination <- source1 op source2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Exercise 1

• Compiling a C assignment using registers

• The variables f, g, h, i, and j are assigned to the registers
s0, s1, s2, s3, and s4, respectively.
What is the compiled RISC-V code?

f = (g + h) – (i + j);

s0 = (s1 + s2) – (s3 + s4);

t0 = s1 + s2;

t1 = s3 + s4;

s0 = t0 – t1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

(1) Machine Language - Add instruction (add)

• Instructions are 32 bits long

• Arithmetic Instruction Format (R-type):

opcode 7-bits opcode that specifies the operation

rs1 5-bits register file address of the first source operand

rs2 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

13

R-typefunct7 rs2 rs1 funct3 rd opcode

add x7, x8, x9

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

(2) RISC-V Add immediate instruction (addi)

• Small constants are used often in typical code

• Possible approaches?

• put “typical constants” in memory and load them

• create hard-wired registers (like x0) for constants like 1

• have special instructions that contain constants !

• Machine format (I format):

• The constant is kept inside the instruction itself

• Immediate format limits values to the range +211–1 to -211

addi x7, x8, -2 # x7 = x8 + (-2)

14
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

RISC-V Memory Access Instructions

• RISC-V has two basic data transfer instructions for
accessing memory

• lw x5, 24(x7) # load word from memory

• sw x3, 28(x9) # store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

3

(3) Machine Language - Load word instruction (lw)

16

• Load Instruction Format (I-type):

lw x5, 8(x7)

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Exercise 2

• Compiling an assignment when an operand is in memory

• Let’s assume that A is an array of 100 words and the compiler has
associated the variable g and h with the registers s1 and s2 as before.
Let’s also assume that the starting address, or base address, of the array
is in s3. Compile this C assignment statement.

g = h + A[2];

3

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

s3 0x12000000 A[0]

t0
0x12000004 A[1]
0x12000008 A[2]
0x1200000c A[3]
0x12000010 A[4]

t0 = A[2]; # address is s3 + 8

s1 = s2 + t0;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

(4) Machine Language - Store word instruction (sw)

18

• Load Instruction Format (S-type):

sw x5, 8(x7)

S-typeimm[11:5] rs1 funct3 imm[4:0] opcoders2

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Exercise 3

• Compiling using load and store

• Assume variable h is associated with register s2 and base
address of the array A is in s3. What is the RISC-V
assembly code for the C assignment statement?

A[1] = h + A[2];

t0 = A[2]; # address is s3 + 8

t1 = s2 + t0;

A[1] = t1; # address is s3 + 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

(5) RISC-V branch if not equal instructions (bne)

20

• RISC-V conditional branch instructions (bne, branch
if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5 # h = i + j;

Lbl1: ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Venus RISC-V editor and simulator will help us

• https://github.com/kvakil/venus

• https://venus.cs61c.org/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Exercise 4

• Compiling using add, addi, and bne

• What is the RISC-V assembly code for the C assignment
statement?

void main(){

int i, sum=0;

for(i=1; i<11; i++) sum = sum + i;

}

void main(){

int s2, s3=11, s4=0;

for(s2=1; s2<s3; s2++) s4 = s4 + s2;

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle.
While easy to understand, it is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Sample circuit 3

• 2-bit counter as a simple sequential circuit

+

1

2

clk

cnt2

module counter

cnt
[1:0]

module top();
reg r_clk=0;
initial #150 forever #50 r_clk = ~r_clk;
initial #810 $finish;
wire [1:0] w_cnt;
counter m1 (r_clk, w_cnt);
initial $dumpvars(0, m1);

endmodule

module counter(clk, cnt);
input wire clk;
output reg [1:0] cnt;
initial cnt = 0;
always@(posedge clk) cnt <= cnt + 1;

endmodule

