
東京工業大学工学部

学士論文

Research on High-speed Logic Simulation

for Computer Architectures

指導教員 Kenji KISE Associate Professor

平成 25 年 7 月

提出者

学科 Department of Computer Science

学籍番号 09_06410

氏名 Tatsuya KANEKO

指導教員　　印

学科長　認定印

2013 学士論文内容梗概

Research on High-speed Logic Simulation

for Computer Architectures
指導教員 Kenji KISE Associate Professor
Department of Computer Science
09_06410 Tatsuya KANEKO

The VLSI chips such as high performance processors or SoCs with processor ele-
ments are designed in the flow of architectural design, logic design, circuit design,
and physical design. In the architectural design and logical design, Register Trans-
fer Level (RTL) simulation is essential for logical verification. Hardware description
languages such as Verilog HDL or VHDL are often used for the RTL modeling and
simulation. But the logic simulation speed of Verilog HDL is slow.

ArchHDL which is a new language for hardware RTL modeling on C++ was
proposed to solve this problem. ArchHDL treats a register as a variable and a wire
as a function. The hardware description in ArchHDL is similar to that in Verilog
HDL.

The architectural simulation speed with ArchHDL is much faster than that with
Icarus Verilog, which is a verilog simulator of open source. It is often faster than
VCS of Synopsys, Inc. VCS is one of the fastest verilog simulators and proprietary
software.

In this thesis, I aim to speed up the logical simulation with ArchHDL. I propose
and implement three methods as follows: (1) removal of conditional branch for data
update, (2) storing register values to the continuous memory location and (3) the
parallelization of the execution of multiple instances.

I evaluate the simulation time with 4096 of the counters circuit as a micro bench-
mark and a stencil-computation circuit as a realistic hardware as an evaluation. The
evaluation results as the micro benchmark show that the elapsed time of the pro-
posed methods is 5.23 times faster than that of the original ArchHDL. The evalu-
ation results as the realistic hardware show that the elapsed time of the proposed
methods is 1.95 times faster than that of the original ArchHDL. The results show
that ArchHDL applied the proposed methods can perform faster than VCS in the all
evaluations in this thesis.

i

Contents

1 Introduction 1
1.1 Background and research objective . 1
1.2 Outline of this thesis . 2

2 Overview of ArchHDL 3
2.1 The Lambda Function of C++11 . 3
2.2 RTL modeling on ArchHDL . 4
2.3 Test bench description of ArchHDL . 6
2.4 Implementation of ArchHDL . 8

2.4.1 Definition of reg class . 10
2.4.2 Definition of wire class . 11
2.4.3 Definition of Module class . 12

3 The Proposal of Optimization for ArchHDL 13
3.1 A Direction for High-speed Simulation 13
3.2 Proposed methods with sequential program 13

3.2.1 Removal of conditional branch for data update 13
3.2.2 Storing register values to the continuous memory location . . . 14

3.3 The parallelization of the execution of multiple instances 17

4 Evaluation 19
4.1 Evaluation by Micro Benchmark . 20
4.2 Evaluation by Stencil-Computation Circuit 23

5 Conclusion 25

Acknowledgment 26

Bibliography 27

1

Chapter 1

Introduction

1.1 Background and research objective
The VLSI chips such as high performance processors or SoCs with processor ele-
ments are designed in the flow of architectural design, logic design, circuit design,
and physical design. In the architectural design and logical design, Register Transfer
Level (RTL) simulation is essential for logical verification. Hardware description lan-
guages such as Verilog HDL [1] or VHDL [2] are often used for the RTL modeling
and simulation.

ArchHDL was proposed as a new language for hardware RTL modeling [3]. The
hardware description in ArchHDL is similar to that in Verilog HDL.

The architectural simulation speed with ArchHDL is much faster than that with
Icarus Verilog [4], which is a verilog simulator of open source. It is also faster than
that with NC-Verilog of Cadence, Inc. NC-Verilog is a verilog simulator and propri-
etary software. However, it is not faster than that with VCS of Synopsys, Inc. [5] in
some hardware simulation. VCS is one of the fastest verilog simulators and propri-
etary software.

In this thesis, I aim to speed up the logical simulation with ArchHDL. I propose
and implement three methods as follows: (1) removal of conditional branch for data
update, (2) storing register values to the continuous memory location and (3) the
parallelization of the execution of multiple instances.

In comparison with Icarus Verilog, NC-Verilog and VCS, I show the usefulness
of the methods in this thesis.

Chapter 1 Introduction 2

1.2 Outline of this thesis
The rest of this thesis is organized as follows. Section 2 provides the overview of
ArchHDL. In section 3, I propose the three methods of ArchHDL. In section 4, I
evaluate the simulation speed of ArchHDL in comparison with the various verilog
simulators. In section 5, I present a conclusion of this thesis.

3

Chapter 2

Overview of ArchHDL

2.1 The Lambda Function of C++11
In ArchHDL, lambda function is used for hardware modeling. The specification of
lambda function is defined in the C++ ISO standard named C++11 and lambda
function is supported as a C++ standard library from GCC version 4.5 released in
2010. In this section, we explain a little about the C++11 lambda function.

Simply to say, a lambda function is an anonymous function or a function without
its name. Fig. 2.1 shows a sample program which has a definition of lambda function.
The definition of the lambda function is in the line 2 of the code. The function takes
two int values of x and y as arguments and returns the sum of these arguments.
Note that this program includes just a definition of lambda function for explanation.
Therefore, the function in the line 2 has no effect for this program.

The description of lambda function starts from lambda-introducer [] and a lambda
introducer may contain a lambda-capture like “=”. Note that a statement start with
“[=]” is a lambda function. The return type of a lambda function is automatically
deduced from the return expression in compile time. In the case of this example, the
return type is expected as int.

Fig. 2.2 shows a sample program using lambda function. In the line 4 and 5, a
lambda function [=](int x, int y) { return x + y; } is assigned to a func-
tion object Sum. The type of the lambda function is std::function<int ()>, and
Sum is declared with this type. Thus, Sum becomes a function which takes two int
arguments and returns an int value.

In the line 6, the function Sum is called. The return value of Sum is assigned to a
variable c. The variable a and the variable b are defined in the line 2 and 3. They are
two arguments of the function Sum. This program returns a value of 5 computed by

Chapter 2 Overview of ArchHDL 4

1 void sample() {
2 [=](int x, int y){ return x + y; };
3 }

Fig. 2.1 A sample C++ program which includes just a definition of lambda func-
tion. The definition of the lambda function is in the line 2. The function takes two
int values of x and y as arguments and returns the sum of these arguments.

1 int sample() {
2 int a = 2;
3 int b = 3;
4 std::function<int ()> Sum =
5 [=](int x, int y) { return x + y; };
6 int c = Sum(a, b);
7 return c;
8 }

Fig. 2.2 A sample C++ program which includes a definition and a use of lambda
function. Sum is a function object. A lambda function defined in the line 5 is
assigned to Sum. Sum is used in the line 6 with two integer arguments. This
program returns a value of 5.

Sum.

2.2 RTL modeling on ArchHDL
The hardware description in ArchHDL is similar to that of Verilog HDL. The hard-
ware RTL modeling on ArchHDL is done with Module class, reg class, wire class and
the lambda function of C++11.

Fig. 2.4 shows a code of 8-bit counter in Verilog HDL. The code for the same 8-
bit counter in ArchHDL is shown in Fig. 2.3. In the code in ArchHDL, a class which
declared as a subclass of the Module class corresponds to a module of Verilog HDL.
In the following, we call this class “Module child class”. Similarly, the reg class and
the wire class correspond to a register and a wire of Verilog HDL respectively.

In a Module child class, A Init function and An Always function are declared for
a wire assignment and a register assignment.

In the Init function, users write the assignment of all wire in a module. To realize
the continuous assignment in C++, ArchHDL uses the lambda function and defines
all wire as a function. The description in Init function corresponds to the assign

2.2 RTL modeling on ArchHDL 5

1 class Counter : public Module {
2 public:
3 wire<uint> out;
4 reg<uint> counter;
5 void Init() {
6 out = [=]() { return counter(); };
7 }
8 void Always() {
9 counter <<= (counter() + 1) & 0xff;

10 }
11 };

Fig. 2.3 A description of 8-bit counter in ArchHDL.

1 module Counter(CLK, out);
2 input CLK;
3 output [7:0] out;
4
5 reg [7:0] counter;
6 assign out = counter;
7 always @(posedge CLK) begin
8 counter <= counter + 1;
9 end

10 endmodule

Fig. 2.4 A description of 8-bit counter in Verilog HDL.

statement of Verilog HDL. In the line 6 of Fig. 2.3, the lambda function ([=]() {

return counter(); }) which returns a value of reg counter is assigned to the wire
out. Note that, the value of the reg class object can be get by calling the object as a
function. Therefore, the function call counter() returns the value of reg counter. This
statement equals to the line 6 of Fig. 2.4.

In the Always function, users write the assignment of all register in a module.
In ArchHDL, the assignment of a value to a register is allowed only at the time of a
positive edge of a single clock. ArchHDL realizes the non-blocking assignment to a
register using <<= operator. In the ArchHDL library, the <<= operator is overloaded
as the non-blocking assignment implementation. Therefore, statements in the Always
function is corresponds to statements in the always@(posedge clock) block in Ver-
ilog HDL. In the line 9 of Fig. 2.3, the reg counter is assigned an incremented value
of itself. This statement equals to the line 8 of Fig. 2.4.

ArchHDL uses the integer type of C++ as a data type of registers and wires. In

Chapter 2 Overview of ArchHDL 6

1 class TestTop : public Module {
2 public:
3 reg<uint> HALT;
4 reg<uint> cycle;
5
6 wire<uint> cnt_out;
7 Counter cnt;
8
9 void Init() {

10 cnt_out = cnt.out;
11 }
12 void Always() {
13 cycle <<= cycle() + 1;
14 HALT <<= (cycle() >= HALT_CYCLE);
15
16 if (cycle() > (HALT_CYCLE - 10)) {
17 printf("%d %u\n", cycle(), cnt_out());
18 }
19 }
20 };
21
22 int main() {
23 TestTop testtop;
24 while (!testtop.HALT()) {
25 ArchHDL::Step();
26 }
27 return 0;
28 }

Fig. 2.5 A sample description of a test bench for the 8-bit counter in ArchHDL

the example shown in Fig. 2.3, we used unsigned int as the data type for the register
and the wire. To implement the 8-bit counter in ArchHDL, the value of unsigned int
is masked by 0xff as in the line 9 of Fig. 2.3.

2.3 Test bench description of ArchHDL
ArchHDL is implemented using C++. Users are able to describe a test bench flexibly
to the extent possible in C++. In this section, we show an example of a test bench in
ArchHDL which is similar to a test bench in Verilog HDL.

Fig. 2.5 is an example of a test bench for the 8-bit counter shown in Fig. 2.3 us-
ing ArchHDL. The description of includes and definitions are omitted. The variable
HALT_CYCLE used in the line 14 and 16 is a constant number.

This test bench is designed as making the test module TestTop to test the 8-bit

2.3 Test bench description of ArchHDL 7

1 module TestTop();
2 reg CLK;
3 reg [31:0] cycle;
4
5 wire [7:0] ot_cnt;
6 Counter cnt(CLK, ot_cnt);
7
8 initial begin
9 CLK = 0;

10 cycle = 0;
11 cnt.cnt = 0;
12 end
13
14 always #50 CLK = ~CLK;
15
16 always @(posedge CLK) begin
17 cycle <= cycle + 1;
18 if (cycle > (‘HALT_CYCLE - 10))
19 $write("%d %d\n", cycle, ot_cnt);
20 if (cycle >= ‘HALT_CYCLE) $finish;
21 end
22 endmodule

Fig. 2.6 A sample description of a test bench for the 8-bit counter in Verilog HDL

counter in it. In this way, the description of the main function (in the line 22 to 28)
becomes simple. Only the creation of the TestTop module instance and the call of Step
function are written in the main function.

The reg class instances and the wire class instances in a Module child class are
managed in the ArchHDL library. The pointers of them are passed to ArchHDL
library when the instance of the Module child class is created. Thus, the simulation of
the 8-bit counter can be carried out only with the call of Step function which defined
in the ArchHDL library after the creation of TestTop module.

Fig. 2.6 is an example of a test bench for the 8-bit counter in Verilog HDL. Arch-
HDL is able to write a test bench in similar description in Verilog HDL. The major
difference between the test bench in ArchHDL and Verilog HDL is the description
of clock generation which is denoted in the line 14 of Fig. 2.6. Otherwise there is no
significant difference in the description in ArchHDL and Verilog HDL.

Chapter 2 Overview of ArchHDL 8

2.4 Implementation of ArchHDL
Seven classes are defined in the ArchHDL library. They are Module class, ModuleIn-
terface class, wire class, WireInterface class, RegInterface class, reg class and Singleton
class. In this section, we explain about the implementation of ArchHDL library while
showing its source code.

Fig. 2.7 shows the definition of RegisterInterface class, ModuleInterface class,
WireInterface class, Singleton class and Step function.

ModuleInterface class, WireInterface class and RegisterInterface class are interface
classes of Module class, wire class and reg class respectively. ArchHDL adopts the
singleton pattern, and Singleton class consolidate instances of Module child class, wire
class and reg class. This class is the most important class in the ArchHDL library.

As member variables, Singleton class has three dynamic arrays which keep point-
ers of Module class, wire class and reg class (denoted in the line from 18 to 20). When
the instance of a Module child class, a wire class or a reg class is created, the pointer
to its class is passed to the instance of Singleton class. At that time, the pointer is
upcasted to its interface class automatically (denoted in the line from 26 to 34).

The Step function is the function to do one cycle simulation of implemented
hardware. In the Step function, the Init function and the Exec function in Singleton
class are called. The multicycle simulation can be carried by repeated call of the Step
function.

The Init function of Singleton class (denoted in the line from 35 to 39) calls the
Init function of all Module child class instance which kept in Singleton class. Note that,
the Init function in Singleton class is only called at the first call of the Step function.

In the Exec function (denoted in the line from 40 to 47), at first Always functions
of All Module chile class instance held in Singleton class are called (denoted in the line
42). Next, Update functions of All reg class instance held in Singleton class are called
(denoted in the line 45).

A value at next cycle of all register is computed by calling the Always function.
The value of registers are updated to the new value by calling the Update function.
The process of the Always function and the Update function implements the non-
blocking assignment of Verilog HDL.

2.4 Implementation of ArchHDL 9

1 class RegisterInterface {
2 public:
3 virtual void Update() = 0;
4 };
5
6 class ModuleInterface {
7 public:
8 virtual void Init() = 0;
9 virtual void Always() = 0;

10 };
11
12 class WireInterface {};
13
14 namespace ArchHDL {
15
16 class Singleton {
17 private:
18 std::vector<RegisterInterface*> registers_;
19 std::vector<ModuleInterface*> modules_;
20 std::vector<WireInterface*> wires_;
21 public:
22 static Singleton& GetInstance(void) {
23 static Singleton singleton;
24 return singleton;
25 }
26 void AddRegister(RegisterInterface* ri) {
27 registers_.push_back(ri);
28 }
29 void AddModule(ModuleInterface* mi) {
30 modules_.push_back(mi);
31 }
32 void AddWire(WireInterface* wi) {
33 wires_.push_back(wi);
34 }
35 void Init() {
36 for (uint i = 0; i < modules_.size(); i++) {
37 modules_[i]->Init();
38 }
39 }
40 void Exec() {
41 for (uint i = 0; i < modules_.size(); i++) {
42 modules_[i]->Always();
43 }
44 for (uint i = 0; i < registers_.size(); i++) {
45 registers_[i]->Update();
46 }
47 }
48 };
49
50 void Step() {
51 static bool init = false;
52 if (!init) {
53 init = true;
54 ArchHDL::Singleton::GetInstance().Init();
55 }
56 ArchHDL::Singleton::GetInstance().Exec();
57 }
58
59 } // namespace ArchHDL

Fig. 2.7 The source code of each interface class, Singleton class and Step function
in the ArchHDL library.

Chapter 2 Overview of ArchHDL 10

1 template <typename T>
2 class reg : public RegisterInterface {
3 private:
4 bool set_;
5 T curr_;
6 T next_;
7
8 // copy constructor
9 reg<T>(const reg<T>& other);

10 reg<T>& operator=(const reg<T>& rhs);
11 public:
12 reg(): set_(false), curr_(0), next_(0) {
13 ArchHDL::Singleton::GetInstance().AddRegister(this);
14 }
15 void Update() {
16 if (set_) {
17 curr_ = next_;
18 set_ = false;
19 }
20 }
21 void operator=(T val) {
22 curr_ = val;
23 }
24 void operator<<=(T val) {
25 set_ = true;
26 next_ = val;
27 }
28 T operator ()() {
29 return curr_;
30 }
31 };

Fig. 2.8 The source code of reg class in the ArchHDL library.

2.4.1 Definition of reg class

Fig. 2.8 shows the definition of reg class. This class is a template class which takes a
data type to use in the class as the template argument. The RegisterInterface class is
inherited as the interface class.

ArchHDL deals a register as a variable. Therefore, the reg class has two variables
curr_ and next_ which data type is given by the template arguments. The value of
curr_ is a value at one cycle, and the value of next_ is a value at the next cycle. A
value is assigned to the variable next_ by calling the Always function. The value of
the variable next_ is assigned to the variable curr_ by calling the Update function

2.4 Implementation of ArchHDL 11

1 template <typename T>
2 class wire : public WireInterface {
3 private:
4 std::function<T ()> lambda_;
5
6 // copy constructor
7 wire<T>(const wire<T>& other);
8 wire<T>& operator=(const wire<T>& rhs);
9 public:

10 wire(): lambda_(nullptr) {
11 ArchHDL::Singleton::GetInstance().AddWire(this);
12 }
13 void operator=(std::function<T ()> lambda) {
14 lambda_ = lambda;
15 }
16 T operator()() {
17 return lambda_();
18 }
19 };

Fig. 2.9 The source code of wire class in the ArchHDL library.

which is a member method of reg class. In this way, the non-blocking assignment to
the register is carried out.

To assign a value to the variable next_ in the reg class object, <<= operator is
used. We redefine the <<= operator using operator overload. The value assigned to
the reg class object by the <<= operator is stored to the variable next_. At the same
time of assignment, the set_ flag is set.

After calling the Always functions of all Module class instance, the Update func-
tions of all reg class instance are called. Thus, the value of the variable curr_ in reg
class is kept while the function call of the Always functions.

The constructor of reg class initializes the member variables and give the pointer
of itself to Singleton class. The assignment to reg class object by = operator is also
defined for the description of test bench or the setting of initial value. The value
assigned to the reg class object by the = operator updates the variable next_ immedi-
ately. The value of reg class is given by calling the object as a function.

2.4.2 Definition of wire class

Fig. 2.9 shows the definition of wire class. This class is a template class which takes
a data type to use in the class as the template argument. The WireInterface class is

Chapter 2 Overview of ArchHDL 12

1 class Module : public ModuleInterface {
2 private:
3 // copy constructor
4 Module(const Module& other);
5 Module& operator=(const Module& rhs);
6 public:
7 Module() {
8 ArchHDL::Singleton::GetInstance().AddModule(this);
9 }

10 virtual void Init() {}
11 virtual void Always() {}
12 };

Fig. 2.10 The source code of Module class in the ArchHDL library.

inherited as the interface class.
ArchHDL deals wire as a function. Therefore, wire class has a variable lambda_

to hold a lambda function. The data type of return value of this lambda function is
the data type given by the template argument.

The assignment to the wire class object is limited to the assignment of the lambda
function by disallowing the copy constructor and overloading the = operator. In this
way, the wire class becomes to be the class which held a lambda function described
in the Init function of Module child class.

The constructor of wire class initializes the member variables and give the pointer
of itself to Singleton class. Calling the object of wire class as a function, it returns the
return value of lambda function evaluation. Thus, a value of a wire at one cycle can
be get from the function call of the wire class object.

2.4.3 Definition of Module class

Fig. 2.10 is the definition of Module class. This class inherits ModuleInterface class. We
use Module class as the parent class to describe a module in ArchHDL.

The constructor of Module class gives the pointer of itself to Singleton class. The
Init function and the Always function are declared as virtual functions in Module-
Interface. Therefore, the empty Init function and the empty Always function are also
defined in Module class.

13

Chapter 3

The Proposal of Optimization

for ArchHDL

3.1 A Direction for High-speed Simulation
As a direction for high-speed simulation, I propose both optimizations in sequential
programming and parallelization.

3.2 Proposed methods with sequential program

3.2.1 Removal of conditional branch for data update

In the implementation shown in Fig. 2.8, ArchHDL gives non-blocking assignment
and blocking assignment as methods for updating the value of the reg class instance.

As to blocking assignment, the member variable curr_ of the reg class instance
must be assigned to the value if the blocking assignment is carried out to the reg
class instance.

On the other hand, as to non-blocking assignment, the member variable set_ of
the reg class instance is copied to true and the member variable next_ is assigned
to the value if the non-blocking assignment is carried out to the reg class instance.
Only when the member variable set_ is true, the member variable next_ is copied to
the value of the member variable curr_ in the Update method, which is a member
method of reg class. It shows the value of the register is updated to the new value
before the cycle in which the non-blocking assignment is carried out to the reg class
instance.

In the implementation shown in Fig. 2.8, it is not necessary to perform the pro-

Chapter 3 The Proposal of Optimization for ArchHDL 14

1 template <typename T>
2 class reg : public RegisterInterface {
3 private:
4 T curr_;
5 T next_;
6
7 // disallow copy and assign
8 reg<T>(const reg<T>& other);
9 reg<T>& operator=(const reg<T>& rhs);

10 public:
11 reg(): curr_(0), next_(0) {
12 ArchHDL::Singleton::GetInstance().AddRegister(this);
13 }
14 void Update() {
15 curr_ = next_;
16 }
17 void operator=(T val) {
18 curr_ = val;
19 next_ = val;
20 }
21 void operator<<=(T val) {
22 next_ = val;
23 }
24 T operator()() {
25 return curr_;
26 }
27 };

Fig. 3.1 The source code of reg class which is removed the conditional branch

cess of assignment if the values of the next_ and curr_ of the reg class instance are
same. Therefore the unnecessary assignment is avoided by using the variable set_.
This implementation may be effective if the reg class instance is rarely updated.

In my proposed method, the value of the next_ is always assigned to the variable
curr_ every cycle. It eliminates the overhead of the if branch. This implementation is
effective if the reg class instance is updated frequently.

Fig. 3.1 shows the implementation of the proposed method. It is removed the
variable set_ from the implementation shown in Fig. 2.8.

3.2.2 Storing register values to the continuous memory location

Fig. 3.2 shows the process of the reg class instance with ArchHDL. It denotes Fig. 2.7
in the line from 44 to 46. The reg class instances are painted gray and metadata of
the class, the variable next_ and the variable curr_ are represented from the left. The

3.2 Proposed methods with sequential program 15

next_	curr_	 next_	curr_	

registers_	

Fig. 3.2 The process of the reg class instance with ArchHDL

big frame on the left denotes registers_ using std::vector in the line 18 of Fig. 2.7.
Solid arrows represent a copy. Dotted arrows represent a pointer reference.

To simulate the non-blocking assignment in ArchHDL, it follows the values of
the registers_ and obtains a pointer to the reg class instances and the Update method
of the reg class instances is called.

If I implement the removal of the conditional branch for data update, which is
shown in Section 3.2.1, the value of the next_ is always assigned to the variable curr_
every cycle in reg::Update method.

The two overheads of this assignment and function call make the speed of the
ArchHDL slow down.

Fig. 3.3 shows the proposed method. Fig. 3.3 shows the values of the reg class
instances stored as an array. It is changed into holding each pointer that all of the
reg class instances have the value of the next cycle and the value of the current
cycle in the proposed method. The reg class instances are painted gray and metadata
of the class, the &next_ and the &curr_ are represented from the left. The &next_

and the &curr_ are pointers of the value of next_ and curr_. The two big frames on
the bottom denote the arrays gathered the value of next_ and curr_. They are named
next collections and curr collections here. Solid arrows represent an assignment. Dotted
arrows represent a pointer reference.

It is necessary to examine the address to which the reg class instances are al-

Chapter 3 The Proposal of Optimization for ArchHDL 16

&next_	&curr_	

next!
collections	

curr!
collections	

&next_	&curr_	

Fig. 3.3 The values of the reg class instances stored as an array

located in the implementation of original ArchHDL before the process of assigning
the value of the next_ to the variable curr_ is executed before the next cycle. But if
the implementation of the reg class is the removal of the conditional branch for data
update, Update method is a simple assignment as shown in Fig. 3.3. Memory access
can be carried out continuously because the memory allocation of the variable next_
and curr_ is continuous. The memory allocation is discrete in the implementation
of original ArchHDL. The overhead of a function call is eliminated because it is un-
necessary to call the Update method. In the above reasoning, this implementation is
effective.

As to the implementation of the proposed method, two large arrays of the type
of unsigned int are allocated as the next collections and the curr collections. The
constructor of the reg class allocates each region to the next collections and the curr
collections depending on the type of the template arguments. The allocated region
is multiples of 4 bytes to speed up reference. The &next_ and the &curr_ are the
addresses of the variable next_ and curr_. The reg::Update method is not called but
the next collections are copied to the curr collections.

3.3 The parallelization of the execution of multiple instances 17

1 void Exec() {
2 #pragma omp parallel num_threads(8)
3 {
4 #pragma omp for
5 for (uint i = 0; i < modules_.size(); i++) {
6 modules_[i]->Always();
7 }
8 #pragma omp for
9 for (uint i = 0; i < registers_.size(); i++) {

10 registers_[i]->Update();
11 }
12 }
13 }

Fig. 3.4 The source code is parallelized in the for statements of Exec method with
OpenMP in 8 threads.

3.3 The parallelization of the execution of multiple

instances
I have proposed the methods with sequential programming. I propose the paral-
lelization of the execution of multiple instances in this section.

As shown from 40 to 47 lines in Fig. 2.7, each of the Module and reg class instances
calls Module::Always and reg::Update method every cycle.

Module::Always method can be described freely by the user in the line from 41
to 43 in Fig. 2.7. Therefore there is no guarantee that Module::Always method can be
executed separately for each of the Module class instances. However, it is assumed
that it can execute independently in this thesis. Its proof is the research task from
now on. It is possible to parallelize the execution of the Module::Always method.

Fig. 3.2 shows the update of the register by solid arrows. It is possible to execute
independently for each instance. It is possible to parallelize the execution of the
reg::Update method.

In my proposed method, I parallelize Module::Always and reg::Update method in
the line from 41 to 46 of Fig. 2.7. I use OpenMP [6] to parallelize it.

Fig. 3.4 shows that the source code is parallelized in the for statements of Exec
method with OpenMP in 8 threads. Fig. 3.4 shows parallelized code of the line from
40 to 47 in Fig. 2.7. The number of threads can be changed by the environment. The
line 2 of Fig. 3.4 shows parallelization in 8 threads. The line 4 and the line 8 are

Chapter 3 The Proposal of Optimization for ArchHDL 18

OpenMP directives to parallelize the execution of the for statements.
Generally, it is important for parallelization to assign the tasks equally to each

thread. Several methods such as static to determine statically and dynamic to deter-
mine dynamic exist as a way to balance the burden of the for statement in OpenMP.
If you specify the dynamic as a way to schedule, it has the advantage that the tasks
are assigned to each thread almost equally. But It has the disadvantage of large over-
head. If each of the tasks of each register and each module is not very different from
the hardware description with ArchHDL, it is almost effective to specify static.

The chunk size can be specified as the option of the OpenMP. If you specify the
static as a way to schedule and no chunk size, the chunk size is similar to a value
dividing the number of loop iterations by the number of threads.

I specify the static as a way to schedule and no chunk size in the evaluation of
this paper. It is the default setting.

19

Chapter 4

Evaluation

In this chapter, I evaluate the elapsed time of logic simulation of ArchHDL and the
elapsed time is compared with that of logic simulation with Icarus Verilog, NC-
Verilog and VCS.

Table 4.1 shows the simulation environment. I use the two computers of the same
specification for the evaluation. One computer is used to evaluate the simulation
time with Icarus Verilog and ArchHDL. The other is used to evaluate that with
NC-Verilog and VCS. The two computers are the same specification for such as
hardware, CPU, memory and so on. However, I use different operating systems due
to the limitations of the software.

I describe the reason for using different operating systems. NC-Verilog and VCS
support only RPM-based Linux distributions. I use CentOS 5.9, which is a RPM-
based Linux distribution for this evaluation. However, the version of GCC includes
CentOS 5.9 is 4.1.2. Section 2.1 shows that the version of GCC requires 4.5 or greater
for using the lambda function in ArchHDL. I use the Ubuntu 12.04 because the
version of GCC is 4.6.3. I use -O2 as optimization option of GCC. Icarus Verilog can
run on both computers. I use it on Ubuntu 12.04 in this evaluation. The version of
Icarus Verilog on Ubuntu 12.04 is 0.9.5. The version of NC-Verilog is 06.20-s004. The
version of VCS is vcsC-2009.06.

Because the number of cores in CPU is 4 and each core executes 2 threads si-
multaneously, I evaluate the parallelization with OpenMP in 8 threads.

In the evaluation, I use two micro benchmarks and the stencil-computation cir-
cuit [7] as a realistic hardware. I have written hardware description for ArchHDL
and Verilog HDL by myself and verified that the outputs of both the hardware de-
scription are same.

I describe the name of the labels, which are used in the evaluation. Original

Chapter 4 Evaluation 20

Table. 4.1 The simulation environment

Icarus Verilog, ArchHDL NC-Verilog, VCS
OS Ubuntu 12.04 CentOS 5.9
CPU Core i7-3770K 3.50GHz Core i7-3770K 3.50GHz
Memory 16 GB 16 GB

1 unsigned int xor() {
2 static unsigned int y = 2463534242;
3 y ^= (y << 13);
4 y ^= (y >> 17);
5 return (y ^= (y << 5));
6 }

Fig. 4.1 The algorithm of random number generation based on XORSHIFT RNG
on C language

ArchHDL is named ArchHDL. ArchHDL applied the first optimization is named
NO SET, which is described in Section 3.2.1. ArchHDL applied the second optimiza-
tion is named MEM MAP, which is described in Section 3.2.2. ArchHDL applied the
third optimization is named PARA, which is described in Section 3.3.

4.1 Evaluation by Micro Benchmark
I evaluate the simulation time with the counter circuits and the random number
generator circuits by XORSHIFT RNG (Random Number generator) as micro bench-
marks.

The counter circuit is a circuit that adds 1 per cycle as shown in Fig. 2.3. I
can specify the number of the counters in order to increase the scale of hardware.
The circuit by XORSHIFT RNG is implemented as the random number generator
based on XORSHIFT RNG by a hardware description. XORSHIFT RNG uses only
the exclusive or and a bit shift to generate the random numbers. Fig. 4.1 shows the
algorithm of random number generator based on XORSHIFT RNG in C language.

Fig. 4.2 shows the speed up ratio normalized by Icarus Verilog compared with
the elapsed time of 4096 of the counter circuit. The vertical axis is the speed up ratio
normalized by Icarus Verilog.

The simulation time of ArchHDL which includes ArchHDL, NO SET, MEM

4.1 Evaluation by Micro Benchmark 21

0 !

50 !

100 !

150 !

200 !

250 !

300 !

ArchHDL! NO SET! MEM MAP! PARA! MEM MAP!
+PARA!

NC-Verilog! VCS!

s
p
e
e
d

u
p

r
a
t
i
o

Fig. 4.2 Speed up ratio normalized by Icarus Verilog compared with the elapsed
time of 4096 of the counter circuit

MAP, PARA and MEM MAP + PARA is much faster than that of NC-Verilog and
VCS. The evaluation result shows that the elapsed time of MEM MAP + PARA is
58.8 times faster than that of NC-Verilog and 56.7 times faster than that of VCS.

The proposed methods in this paper are effective as compared with the original
ArchHDL. The elapsed time of MEM MAP + PARA is 5.23 times faster than that of
the original ArchHDL.

Fig. 4.3 shows the speed up ratio compared with the elapsed time of the counter
circuits with Icarus Verilog in ArchHDL applying the proposed methods. The verti-
cal axis is the speed up ratio normalized by Icarus Verilog. The horizontal axis is the
number of counters.

The speed up ratio compared to Icarus Verilog is almost unchanged if the num-
ber of the counters is changed because MEM MAP is executed in sequential pro-
gram. The elapsed time of PARA and MEM MAP + PARA which are executed in
parallel is faster than that of MEM MAP if the number of counters is 1024 or more.
The proposed methods with sequential program are effective in parallelized version
because the simulation time of MEM MAP + PARA is always faster than that of
PARA. Because the number of counters can be regarded as the scale of hardware,

Chapter 4 Evaluation 22

0 !

50 !

100 !

150 !

200 !

250 !

300 !

64! 128! 256! 512! 1024! 2048! 4096!

s
p
e
e
d

u
p

r
a
t
i
o
	

the number of counters	

MEM MAP!

PARA!

MEM MAP!
+PARA!

Fig. 4.3 Speed up ratio compared with the elapsed time of the counter circuits
with Icarus Verilog in ArchHDL applying the proposed methods

the parallelization is effective if the hardware is large-scale.
Fig. 4.4 shows speed up ratio normalized by Icarus Verilog compared with the

elapsed time of 512 of the random number generator circuits by XORSHIFT RNG.
The number of trials is about 524 thousand times. This circuit includes the 512 ran-
dom number generators with different initial values.

The simulation time of ArchHDL is much faster than that of NC-Verilog and
VCS. The simulation time of MEM MAP + PARA is 32.2 times faster than that of
NC-Verilog and 11.3 times faster than that of VCS.

The proposed methods in this paper are effective as compared with the original
ArchHDL. The simulation time of MEM MAP + PARA is 2.78 times faster than that
of the original ArchHDL.

4.2 Evaluation by Stencil-Computation Circuit 23

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

1000!

ArchHDL! NO SET! MEM MAP! PARA! MEM MAP!
+PARA!

NC-Verilog! VCS!

s
p
e
e
d

u
p

r
a
t
i
o

Fig. 4.4 Speed up ratio normalized by Icarus Verilog compared with the elapsed
time of 512 of the random number generator circuits by XORSHIFT RNG

4.2 Evaluation by Stencil-Computation Circuit
Fig. 4.5 shows speed up ratio normalized by Icarus Verilog compared with the
elapsed time of a stencil-computation circuit. The speed up ratio as elapsed time
in Icarus Verilog is 1 is denoted in the vertical axis.

The simulation time of the original ArchHDL is faster than that of NC-Verilog.
The simulation time of the original ArchHDL and NO SET is not faster than that of
VCS. But the simulation time of MEM MAP + PARA is 1.83 times faster than that
of VCS.

Update method is called 325,469,175 times in a stencil-computation circuit. The
number of the value of the reg non-updated is 5,145,760 times. That is, the number
of the value of the reg non-updated is only 1.58% of the entire Update method call.
Therefore the simulation time of NO SET is faster than that of the original ArchHDL.
The simulation time of MEM MAP is 1.31 times faster than that of the original
ArchHDL.

The parallelization is effective because this hardware with ArchHDL has the 133

Chapter 4 Evaluation 24

0	

5	

10	

15	

20	

25	

30	

35	

40	

ArchHDL! NO SET! MEM MAP! PARA! MEM MAP!
+PARA!

NC-Verilog! VCS!

s
p
e
e
d
u
p

r
a
t
i
o
	

Fig. 4.5 Speed up ratio normalized by Icarus Verilog compared with the elapsed
time of a stencil-computation circuit

Module class instances and the 991 reg class instances. The simulation time of MEM
MAP + PARA is 1.95 times faster than that of the original ArchHDL.

25

Chapter 5

Conclusion

I propose, implement and evaluate the methods for high-speed simulation of Arch-
HDL, which is proposed as a new language for hardware RTL modeling. ArchHDL
treats registers as variables and wires as functions, which realizes an RTL modeling
on C++.

The three methods I propose and implement in this thesis are as follows: (1)
removal of the conditional branch for data update, (2) storing register values to the
continuous memory location and (3) the parallelization of the execution of multiple
instances.

In the proposed methods, I compare the elapsed time of ArchHDL with that of
Icarus Verilog, NC-Verilog and VCS and evaluate the simulation time by using the
hardware descriptions of 4096 of the counters circuit and a random number gener-
ator circuits by XORSHIFT RNG as a micro benchmark and a stencil-computation
circuit as a realistic hardware.

With 4096 of the counters circuit, the elapsed time of ArchHDL with the pro-
posed methods is 58.8 times faster than that of NC-Verilog and 56.7 times faster
than that of VCS. With the random number generator circuits by XORSHIFT RNG,
it is 32.2 times faster than that of NC-Verilog and 11.3 times faster than that of VCS.
With a stencil-computation circuit, it is 2.82 times faster than that of NC-Verilog and
1.83 times faster than that of VCS.

With 4096 of the counters circuit, the elapsed time of ArchHDL with the pro-
posed methods is 5.23 times faster than that of the original ArchHDL. With the
random number generator circuits by XORSHIFT RNG, it is 2.78 times faster. With a
stencil-computation circuit, it is 1.95 times faster.

These results show that ArchHDL applied the three proposed methods can per-
form faster than VCS in all evaluations in this thesis.

26

Acknowledgment

I would like to express the deepest appreciation to Associate Prof. Kenji KISE. He
has been my supervisor. His constant support, guidance, and encouragement have
been essential for me to complete my thesis. I also would like to thank all the mem-
bers at Kise Laboratory. I would particularly like to thank Mr. Shimpei SATO. He
proposed ArchHDL and gived insightful comments and suggestions. Discussions
with Mr. Shinya TAKAMAEDA-YAMAZAKI and Mr. Ryosuke SASAKAWA have
been insightful. I would like to thank them.

I would like to thank Ms. Yukiko ASOH. She corrected the English written by
me.

I would like to thank Mr. Masaru IRITANI. I received generous support from
him.

I would like to thank Mr. Shintaro SANO. He had made a significant contribu-
tion to the development of ArchHDL.

27

Bibliography

[1] : IEEE Standard Verilog Hardware Description Language, IEEE Std 1364-2001,
pp. 1–856 (2001).

[2] : IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis, IEEE Std
1076.6-2004 (Revision of IEEE Std 1076.6-1999), pp. 1–112 (2004).

[3] 佐藤真平，吉瀬謙二：C++をベースとする新しいハードウェア記述の検討，情報処理
学会研究報告. 計算機アーキテクチャ研究会報告 (ARC-205)，pp. 1–7 (2013).

[4] : Icarus Verilog. http://iverilog.icarus.com.
[5] : Synopsys VCS. http://www.synopsys.com/VCS.
[6] : OpenMP. http://openmp.org.
[7] 小林諒平，高前田（山崎）伸也，吉瀬謙二：多数の小容量 FPGA を用いたスケーラ
ブルなステンシル計算機の開発，先進的計算基盤システムシンポジウム論文集，pp.
179–187 (2013).

	1 Introduction
	1.1 Background and research objective
	1.2 Outline of this thesis

	2 Overview of ArchHDL
	2.1 The Lambda Function of C++11
	2.2 RTL modeling on ArchHDL
	2.3 Test bench description of ArchHDL
	2.4 Implementation of ArchHDL
	2.4.1 Definition of reg class
	2.4.2 Definition of wire class
	2.4.3 Definition of Module class

	3 The Proposal of Optimization for ArchHDL
	3.1 A Direction for High-speed Simulation
	3.2 Proposed methods with sequential program
	3.2.1 Removal of conditional branch for data update
	3.2.2 Storing register values to the continuous memory location

	3.3 The parallelization of the execution of multiple instances

	4 Evaluation
	4.1 Evaluation by Micro Benchmark
	4.2 Evaluation by Stencil-Computation Circuit

	5 Conclusion
	Acknowledgment
	Bibliography

